Điền dấu thích hợp (<, >, = ) vào ô vuông.
Thực hiện phép cộng rồi so sánh kết quả với phân số còn lại.
- Muốn cộng hai phân số cùng mẫu, ta cộng các tử và giữa nguyên mẫu:
Tổng quát: \(\frac{a}{m} + \frac{b}{m} = \frac{{a + b}}{m}\)
- Muốn cộng hai phân số không cùng mẫu, ta viết chúng dưới dạng hai phân số cùng một mẫu rồi cộng các tử và giữ nguyên mẫu chung.
Lời giải chi tiết
\(a)\,\,\frac{{ - 4}}{7} + \frac{3}{{ - 7}} = \frac{{ - 4}}{7} + \frac{{ - 3}}{7} = \frac{{ - 4 + \left( { - 3} \right)}}{7} = \frac{{ - 7}}{7} = - 1\)
\(\frac{{ - 15}}{{22}} + \frac{{ - 3}}{{22}} = \frac{{ - 15 + \left( { - 3} \right)}}{{22}} = \frac{{ - 18}}{{22}} = \frac{{ - 9}}{{11}} < \frac{{ - 8}}{{11}}\)
c) \(\begin{array}{l}
\frac{2}{3} + \frac{{ - 1}}{5} = \frac{{10}}{{15}} + \frac{{ - 3}}{{15}} = \frac{{10 + \left( { - 3} \right)}}{{15}} = \frac{7}{{15}}\\
\frac{3}{5} = \frac{9}{{15}}\\
\frac{9}{{15}} > \frac{7}{{15}} \Rightarrow \frac{3}{5} > \frac{2}{3} + \frac{{ - 1}}{5}
\end{array}\)
d) \(\begin{array}{l}
\frac{1}{6} + \frac{{ - 3}}{4} = \frac{2}{{12}} + \frac{{ - 9}}{{12}} = \frac{{2 + \left( { - 9} \right)}}{{12}} = \frac{{ - 7}}{{12}}\\
\frac{1}{{14}} + \frac{{ - 4}}{7} = \frac{1}{{14}} + \frac{{ - 8}}{{14}} = \frac{{1 + \left( { - 8} \right)}}{{14}} = \frac{{ - 7}}{{14}}\\
\frac{{ - 7}}{{12}} = \frac{{ - 7.7}}{{12.7}} = \frac{{ - 49}}{{84}};\\
\frac{{ - 7}}{{14}} = \frac{{ - 7.6}}{{14.6}} = \frac{{ - 42}}{{84}}\\
\frac{{ - 49}}{{84}} < \frac{{ - 42}}{{84}} \Rightarrow \frac{1}{6} + \frac{{ - 3}}{4} < \frac{1}{{14}} + \frac{{ - 4}}{7}
\end{array}\)
Copyright © 2021 HOCTAP247