Cho ba vectơ \(\overrightarrow{a},\) \(\overrightarrow{b}\), \(\overrightarrow{c}\) đều khác vec tơ \(\overrightarrow{0}\). Các khẳng định sau đây đúng hay sai?
a) Nếu hai vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\) cùng phương với \(\overrightarrow{c}\) thì \(\overrightarrow{a}\), \(\overrightarrow{b}\) cùng phương.
b) Nếu \(\overrightarrow{a}\), \(\overrightarrow{b}\) cùng ngược hướng với \(\overrightarrow{c}\) thì \(\overrightarrow{a}\) và \(\overrightarrow{b}\) cùng hướng.
+) Hai vecto được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.
+) Hai vecto cùng phương thì chúng chỉ có thể cùng hướng hoặc ngược hướng.
Lời giải chi tiết
Gọi theo thứ tự \({\Delta _1},{\Delta _2},{\Delta _3}\) là giá của các vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\)
a) \(\overrightarrow{a}\) cùng phương với \(\overrightarrow{c}\) \( \Rightarrow {\Delta _1}//{\Delta _3}\) ( hoặc \({\Delta _1} \equiv {\Delta _3}\)) (1)
\(\overrightarrow{b}\) cùng phương với \(\overrightarrow{c}\) \(\Rightarrow {\Delta _2}//{\Delta _3}\) ( hoặc \({\Delta _2} \equiv {\Delta _3}\) ) (2)
Từ (1), (2) suy ra \({\Delta _1}//{\Delta _2}\) ( hoặc \({\Delta _1} \equiv {\Delta _2}\) ), theo định nghĩa hai vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\) cùng phương.
Vậy câu a) đúng.
b) \(\overrightarrow{a}\) ngược hướng với \(\overrightarrow{c}\) \( \Rightarrow {\Delta _1}//{\Delta _3}\) ( hoặc \({\Delta _1} \equiv {\Delta _3}\)) (1)
\(\overrightarrow{b}\) ngược hướng với \(\overrightarrow{c}\) \(\Rightarrow {\Delta _2}//{\Delta _3}\) ( hoặc \({\Delta _2} \equiv {\Delta _3}\) ) (2)
Từ (1), (2) suy ra \({\Delta _1}//{\Delta _2}\) ( hoặc \({\Delta _1} \equiv {\Delta _2}\) ), theo định nghĩa hai vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\) cùng phương.
Mà \(\overrightarrow{a},\) \(\overrightarrow{b}\) cùng ngược hướng với \(\overrightarrow{c}\Rightarrow \overrightarrow{a}\) và \(\overrightarrow{b}\) cùng hướng.
Copyright © 2021 HOCTAP247