Bài 38 trang 127 SGK Đại số 10 nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Giải và biện luận các bất phương trình

a) \((2x - \sqrt 2 )(x - m) > 0\)

b) \({{\sqrt 3  - x} \over {x - 2m + 1}} \le 0\)

Hướng dẫn giải

Ta có:

\(\eqalign{
& (2x - \sqrt 2 ) = 0 \Leftrightarrow x = {{\sqrt 2 } \over 2} \cr
& x - m = 0 \Leftrightarrow x = m \cr} \) 

i) Với \(x < {{\sqrt 2 } \over 2}\) , ta có bảng xét dấu:

 

 

Vậy \(S = ( - \infty ;m) \cup ({{\sqrt 2 } \over 2}, + \infty )\)

ii) Với \(m = {{\sqrt 2 } \over 2}\) thì bất phương trình trở thành:

\(\eqalign{
& (2x - \sqrt 2 )(x - {{\sqrt 2 } \over 2}) > 0 \Leftrightarrow {(2x - \sqrt 2 )^2} > 0 \cr
& \Leftrightarrow x \ne {{\sqrt 2 } \over 2} \cr
& S = R\backslash {\rm{\{ }}{{\sqrt 2 } \over 2}{\rm{\} }} \cr} \)

iii) Với \(m > {{\sqrt 2 } \over 2}\) , ta có bảng xét dấu:

\(S = ( - \infty ;{{\sqrt 2 } \over 2}) \cup (m; + \infty )\)

 

b) Ta có:

\(\eqalign{
& \sqrt 3 - x = 0 \Leftrightarrow x = \sqrt 3 \cr
& x - 2m + 1 = 0 \Leftrightarrow x = 2m - 1 \cr} \)

i) Nếu \(2m - 1 < \sqrt 3  \Leftrightarrow m < {{\sqrt 3  + 1} \over 2}\) , ta có bảng sau:

 

\(S = \left( { - \infty ;2m - 1} \right) \cup \left[ {\sqrt 3 ; + \infty } \right)\)

ii) Nếu \(2m - 1 = \sqrt 3  \Leftrightarrow m = {{\sqrt 3  + 1} \over 2}\) thì dễ thấy tập nghiệm là:

\(S = ( - \infty ,\sqrt 3 ) \cup (\sqrt 3 , + \infty )\)

iii) Nếu \(2m - 1 > \sqrt 3  \Leftrightarrow m > {{\sqrt 3  + 1} \over 2}\) thì ta có bảng sau:

 

Vậy tập nghiệm là \(S = ( - \infty ,\sqrt 3 ) \cup (2m - 1; + \infty )\)

Copyright © 2021 HOCTAP247