a) Tìm tọa độ của trọng tâm tam giác \(ABC\).
b) Tìm tọa độ điểm \(D\) sao cho \(C\) là trọng tâm tam giác \(ABD\).
c) Tìm tọa độ điểm \(E\) sao cho \(ABCE\) là hình bình hành.
a) Gọi \(G\) là trọng tâm tam giác \(ABC\), ta có
\(\eqalign{
& \left\{ \matrix{
{x_G} = {1 \over 3}({x_A} + {x_B} + {x_C}) = {1 \over 3}( - 4 + 2 + 2) = 0 \hfill \cr
{y_G} = {1 \over 3}({y_A} + {y_B} + {y_C}) = {1 \over 3}(1 + 4 - 2) = 1 \hfill \cr} \right.\,\, \cr
& \Rightarrow \,\,G\,(0\,;\,1). \cr} \)
b) Gọi \(D\,({x_{D\,}}\,;\,{y_D})\) sao cho \(C\) là trọng tâm tam giác \(ABD\). Ta có
\(\eqalign{
& \left\{ \matrix{
{x_C} = {1 \over 3}({x_A} + {x_B} + {x_D}) \hfill \cr
{y_C} = {1 \over 3}({y_A} + {y_B} + {y_D}) \hfill \cr} \right.\,\, \Rightarrow \left\{ \matrix{
2 = {1 \over 3}( - 4 + 2 + {x_D}) \hfill \cr
- 2 = {1 \over 3}(1 + 4 + {y_D}) \hfill \cr} \right. \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\left\{ \matrix{
{x_D} = 8 \hfill \cr
{y_D} = - 11 \hfill \cr} \right. \cr
& \Rightarrow \,\,D\,(8\,;\, - 11) \cr} \)
c) Gọi \(E({x_E}\,;\,{y_E})\) sao cho \(ABCE\) là hình bình hành. Ta có
\(\eqalign{
& \overrightarrow {AB} = \overrightarrow {EC} \,\,\,\, \Leftrightarrow \,\,(6\,;\,3) = (2 - {x_E}\,;\, - 2 - {y_E}) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\left\{ \matrix{
{x_E} = - 4 \hfill \cr
{y_E} = - 5 \hfill \cr} \right. \cr
& \Rightarrow \,\,E\,( - 4\,;\, - 5). \cr} \)
Copyright © 2021 HOCTAP247