Bài 36 trang 31 SGK Hình học 10 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài
Bài 36. Trong mặt phẳng tọa độ, cho ba điểm \(A( - 4\,;1)\,,\,B(2\,;4)\,,\,C(2\,; - 2).\)

a) Tìm tọa độ của trọng tâm tam giác \(ABC\).

b) Tìm tọa độ điểm \(D\) sao cho \(C\) là trọng tâm tam giác \(ABD\).

c)  Tìm tọa độ điểm \(E\) sao cho \(ABCE\) là hình bình hành.

Hướng dẫn giải

a) Gọi \(G\) là trọng tâm tam giác \(ABC\), ta có

\(\eqalign{
& \left\{ \matrix{
{x_G} = {1 \over 3}({x_A} + {x_B} + {x_C}) = {1 \over 3}( - 4 + 2 + 2) = 0 \hfill \cr
{y_G} = {1 \over 3}({y_A} + {y_B} + {y_C}) = {1 \over 3}(1 + 4 - 2) = 1 \hfill \cr} \right.\,\, \cr
& \Rightarrow \,\,G\,(0\,;\,1). \cr} \)

b) Gọi \(D\,({x_{D\,}}\,;\,{y_D})\)  sao cho \(C\) là trọng tâm tam giác \(ABD\). Ta có

\(\eqalign{
& \left\{ \matrix{
{x_C} = {1 \over 3}({x_A} + {x_B} + {x_D}) \hfill \cr
{y_C} = {1 \over 3}({y_A} + {y_B} + {y_D}) \hfill \cr} \right.\,\, \Rightarrow \left\{ \matrix{
2 = {1 \over 3}( - 4 + 2 + {x_D}) \hfill \cr
- 2 = {1 \over 3}(1 + 4 + {y_D}) \hfill \cr} \right. \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\left\{ \matrix{
{x_D} = 8 \hfill \cr
{y_D} = - 11 \hfill \cr} \right. \cr
& \Rightarrow \,\,D\,(8\,;\, - 11) \cr} \)

c) Gọi \(E({x_E}\,;\,{y_E})\) sao cho \(ABCE\) là hình bình hành. Ta có

\(\eqalign{
& \overrightarrow {AB} = \overrightarrow {EC} \,\,\,\, \Leftrightarrow \,\,(6\,;\,3) = (2 - {x_E}\,;\, - 2 - {y_E}) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\left\{ \matrix{
{x_E} = - 4 \hfill \cr
{y_E} = - 5 \hfill \cr} \right. \cr
& \Rightarrow \,\,E\,( - 4\,;\, - 5). \cr} \)

Copyright © 2021 HOCTAP247