Bài 31 trang 103 SGK Hình học 10 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Tìm tọa độ các tiêu điểm, các đỉnh, độ dài trục lớn, độ dài trục bé của mỗi elip có phương trình sau 

\(\eqalign{
& a){{{x^2}} \over {25}} + {{{y^2}} \over 4} = 1; \cr
& b){{{x^2}} \over 9} + {{{y^2}} \over 4} = 1; \cr
& c){x^2} + 4{y^2} = 4. \cr} \)

Hướng dẫn giải

a)  Ta có: \(a = 5;b = 2;c = \sqrt {{a^2} - {b^2}}  = \sqrt {21} \)

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {21} ;0} \right);{F_2}\left( {\sqrt {21} ;0} \right)\)

Tọa độ các đỉnh: \({A_1}\left( { - 5;0} \right);{A_2}\left( {5;0} \right);{B_1}\left( {0; - 2} \right);{B_2}\left( {0;2} \right)\)

Độ dài trục lớn \(2a = 10\) , độ dài trục bé \(2b = 4\)

b) Ta có: \(a = 3;b = 2;c = \sqrt {{a^2} - {b^2}}  = \sqrt 5 .\)

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt 5 ;0} \right);{F_2}\left( {\sqrt 5 ;0} \right)\)

Tọa độ các đỉnh: \({A_1}\left( { - 3;0} \right);{A_2}\left( {3;0} \right);{B_1}\left( {0; - 2} \right);{B_2}\left( {0;2} \right).\)

Độ dài trục lớn \(2a = 6\) , độ dài trục bé \(2b = 4\)

c) Ta có: \({x^2} + 4{y^2} = 4 \Leftrightarrow {{{x^2}} \over 4} + {y^2} = 1\)

\(a = 2;b = 1;c = \sqrt {{a^2} - {b^2}}  = \sqrt 3 .\)

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt 3 ;0} \right);{F_2}\left( {\sqrt 3 ;0} \right)\)

Tọa độ các đỉnh: \({A_1}\left( { - 2;0} \right);{A_2}\left( {2;0} \right);{B_1}\left( {0; - 1} \right);{B_2}\left( {0;1} \right).\)

Độ dài trục lớn \(2a = 4\) , độ dài trục bé \(2b = 2\)

Copyright © 2021 HOCTAP247