Cho hàm số \(f(x) = \frac{x +1}{x^{2}+x-6}\) và \(g\left( x \right) = \tan x + \sin x\)
Với mỗi hàm số, hãy xác định các khoảng trên đó hàm số liên tục.
Hàm phân thức, hàm lượng giác liên tục trên các khoảng xác định của chúng.
Lời giải chi tiết
+) Hàm số \(f(x) = \frac{x +1}{x^{2}+x-6}\) xác định khi và chỉ khi:
\({x^2} + x - 6 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne - 3\\x \ne 2\end{array} \right.\) \( \Rightarrow D = R\backslash \left\{ { - 3;2} \right\}\)
Hàm số \(f(x)\) liên tục trên các khoảng \((-∞; -3), (-3; 2)\) và \((2; +∞)\)
+) Hàm số \(g\left( x \right) = \tan x + \sin x\) xác định khi và chỉ khi
\(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \,\,\left( {k \in Z} \right)\)
Hàm số \(g(x)\) liên tục trên các khoảng \(( - \frac{\pi }{2}+kπ; \frac{\pi }{2}+kπ)\) với \(k ∈ \mathbb Z\).
Copyright © 2021 HOCTAP247