Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 3. Nhị thức Niu-tơn Câu 23 trang 67 SGK Đại số và Giải tích 11 Nâng cao

Câu 23 trang 67 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Tính hệ số của \({x^{25}}{y^{10}}\) trong khai triển của  \({\left( {{x^3} + xy} \right)^{15}}\)

Hướng dẫn giải

Ta có:

\({\left( {{x^3} + xy} \right)^{15}} = \sum\limits_{k = 0}^{15} {C_{15}^k{{\left( {{x^3}} \right)}^{15 - k}}{{\left( {xy} \right)}^k}} \) 

Số hạng chứa \({x^{25}}{y^{10}}\) ứng với k = 10 đó là :

\(C_{15}^{10}{\left( {{x^3}} \right)^5}{\left( {xy} \right)^{10}} = C_{15}^{10}{x^{25}}{y^{10}}\)

Vậy hệ số của  \({x^{25}}{y^{10}}\,la\,C_{15}^{10} = 3003\)

Copyright © 2021 HOCTAP247