Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 5. Các quy tắc tính xác suất Câu 38 trang 85 SGK Đại số và Giải tích 11 Nâng cao

Câu 38 trang 85 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 38. Có hai hòm đựng thẻ, mỗi hòm đựng 12 thẻ đánh số từ 1 đến 12. Từ mỗi hòm rút ngẫu nhiên một thẻ. Tính xác suất để trong hai thẻ rút ra có ít nhất một thẻ đánh số 12.

Hướng dẫn giải

Goị A là biến cố “Thẻ rút từ hòm thứ nhất không đánh số 12”

B là biến cố “Thẻ rút từ hòm thứ hai không đánh số 12”.

Ta có:  \(P\left( A \right) = P\left( B \right) = {{11} \over {12}}.\)

Gọi H là biến cố “Trong hai thẻ rút từ hai hòm có ít nhất một thẻ đánh số 12”.

Khi đó biến cố đối của biến cố H là  \(\overline H \): “Cả hai thẻ rút từ hai hòm đều không đánh số 12”.

Vậy \(\overline H = AB\) .

Theo qui tắc nhân xác suất, ta có:

\(\eqalign{
& P\left( {\overline H } \right) = P\left( {AB} \right) = P\left( A \right)P\left( B \right) = {{121} \over {144}} \cr
& \text{Vậy }\,P\left( H \right) = 1 - P\left( {\overline H } \right) = 1 - {{121} \over {144}} = {{23} \over {144}} \cr} \)

Copyright © 2021 HOCTAP247