Tìm các giới hạn sau :
a. \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x} \right)\)
b. \(\mathop {\lim }\limits_{x \to 1} {{\sqrt {2x - {x^2}} - 1} \over {{x^2} - x}}\)
a. Dạng ∞ - ∞
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } {{{x^2} + 1 - {x^2}} \over {\sqrt {{x^2} + 1} + x}} \cr
& = \mathop {\lim }\limits_{x \to + \infty } {1 \over {\sqrt {{x^2} + 1} + x}} = 0 \cr} \)
b. Dạng \({0 \over 0}\)
\(\eqalign{
& \mathop {\lim }\limits_{x \to 1} {{\sqrt {2x - {x^2}} - 1} \over {{x^2} - x}} = \mathop {\lim }\limits_{x \to 1} {{2x - {x^2} - 1} \over {x\left( {x - 1} \right)\left( {\sqrt {2x - {x^2}} + 1} \right)}} \cr
& = \mathop {\lim }\limits_{x \to 1} {{ - {{\left( {x - 1} \right)}^2}} \over {x\left( {x - 1} \right)\left( {\sqrt {2x - {x^2}} + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} {{1 - x} \over {x\left( {\sqrt {2x - {x^2}} + 1} \right)}} = 0 \cr} \)
Copyright © 2021 HOCTAP247