Câu 51 trang 221 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Tìm đạo hàm đến cấp được nêu kèm theo của các hàm số sau (n ϵ N*)

a. \(y=\sin x,\;y'''\)  

b. \(y = \sin x\sin 5x,{y^{\left( 4 \right)}}\)

c. \(y = {\left( {4 - x} \right)^5},{y^{\left( n \right)}}\)

d. \(y = {1 \over {2 + x}},{y^{\left( n \right)}}\)

e. \(y = {1 \over {2x + 1}},{y^{\left( n \right)}}\)

f. \(y = {\cos ^2}x,{y^{\left( {2n} \right)}}\)

Hướng dẫn giải

a. 

\(\begin{array}{l}
y' = \cos x\\
y" = - \sin x\\
y''' = - \cos x
\end{array}\)

b. 

\(\begin{array}{l}
y = \frac{1}{2}\left( {\cos 4x - \cos 6x} \right)\\
y' = - 2\sin 4x + 3\sin 6x\\
y" = - 8\cos 4x + 18\cos 6x\\
y'" = 32\sin 4x - 108\sin 6x\\
{y^{\left( 4 \right)}} = 128\cos 4x - 648\cos 6x
\end{array}\)

c. 

\(\begin{array}{l}
y' = - 5{\left( {4 - x} \right)^4}\\
y" = 20{\left( {4 - x} \right)^3}\\
y"' = - 60{\left( {4 - x} \right)^2}\\
{y^{\left( 4 \right)}} = 120\left( {4 - x} \right)\\
{y^{\left( 5 \right)}} = - 120\\
{y^{\left( n \right)}} = 0\,\left( {\forall n \ge 6} \right)
\end{array}\)

d. 

\(\begin{array}{l}
y = \frac{1}{{x + 2}} = {\left( {x + 2} \right)^{ - 1}}\\
y' = - 1{\left( {x + 2} \right)^{ - 2}}\\
y" = \left( { - 1} \right)\left( { - 2} \right){\left( {x + 2} \right)^{ - 3}},...
\end{array}\)

Bằng qui nạp ta chứng minh được :
  \({y^{\left( n \right)}} = \left( { - 1} \right)\left( { - 2} \right)...\left( { - n} \right).{\left( {x + 2} \right)^{ - n - 1}}\)

          \(= {\left( { - 1} \right)^n}.\frac{{n!}}{{{{\left( {x + 2} \right)}^{n + 1}}}}\)

e.  

\(\begin{array}{l}
y = {\left( {2x + 1} \right)^{ - 1}}\\
y' = \left( { - 1} \right)\left( {2{{\left( {2x + 1} \right)}^{ - 2}}} \right)\\
y" = \left( { - 1} \right)\left( { - 2} \right){.2^2}{\left( {2x + 1} \right)^{ - 3}},...
\end{array}\)

Bằng qui nạp ta chứng minh được :

 \({y^{\left( n \right)}} = {\left( { - 1} \right)^n}.\frac{{{2^n}.n!}}{{{{\left( {2x + 1} \right)}^{n + 1}}}}\)

f. Ta có: 

\(\begin{array}{l}
y' = - \sin 2x\\
y" = - 2\cos 2x\\
y"' = {2^2}\sin 2x\\
{y^{\left( 4 \right)}} = {2^3}\cos 2x\\
{y^{\left( 5 \right)}} = - {2^4}\sin 2x\\
{y^{\left( 6 \right)}} = - {2^5}\cos 2x,...
\end{array}\)

Bằng qui nạp ta chứng minh được :

   \({y^{\left( {2n} \right)}} = {\left( { - 1} \right)^n}{.2^{2n - 1}}\cos 2x\)

Copyright © 2021 HOCTAP247