Câu 4 trang 78 SGK Hình học 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hai hình bình hành ABCD VÀ ABEF nằm trong hai mặt phẳng khác nhau. Lấy các điểm M, N lần lượt thuộc các đường chéo AC, BF sao cho MC = 2AM, NF = 2BN. Qua M, N, kẻ các đường thẳng song song với AB cắt các cạnh AD, AF lần lượt tại M1, N1. Chứng minh rằng:

a. MN // DE

b. M1N1 // mp(DEF)

c. mp(MNN1M1) // mp(DEF)

Hướng dẫn giải

a. Gọi O là tâm hình bình hành ABCD, ta có AO là trung tuyến và \({{AM} \over {AO}} = {{2AM} \over {AC}} = {2 \over 3}\)

⇒ M là trọng tâm của tam giác ABD , tương tự N là trọng tâm tam giác ABE

Gọi I là trung điểm của AB thì M, N lần lượt trên DI và EI

Trong tam giác IDE ta có: \({{IM} \over {ID}} = {{IN} \over {IE}} = {1 \over 3}\) nên MN // DE và \(MN = {1 \over 3}DE\)

b. Trong ∆FAB: NN1 // AB ⇒ \({{A{N_1}} \over {AF}} = {{BN} \over {BF}} = {1 \over 3}\)

Trong ∆DAB: MM1 // AB ⇒ \({{A{M_1}} \over {AD}} = {{DM} \over {DI}} = {1 \over 3}\)

Do đó \({{A{N_1}} \over {AF}} = {{A{M_1}} \over {AD}}\) nên M1N1 // DF

Mà DF ⊂ (DEF) suy ra M1N1 // mp(DEF)

c. Ta có : M1N1 // DF , NN1 // EF

mà M1N1 và NN1 cắt nhau và nằm trong mp(MNN1M1), còn DF và EF cắt nhau và nằm trong mp(DEF)

Vậy mp(MNN1M1) // mp(DEF)

Copyright © 2021 HOCTAP247