Bài 4 trang 234 SGK Vật lí 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Khảo sát và vẽ đường di tia sáng trong trường hợp tia tới là là trên mặt lăng kính.

Hướng dẫn giải

Trong trường hợp tia tới là là trên mặt lăng kính, ta có góc tới \(i \approx {90^0}\) theo công thức sini = nsinr

\(\Rightarrow {\mathop{\rm s}\nolimits} {\rm{inr}} = {{\sin i} \over n} = {{\sin {{90}^0}} \over n} = {1 \over n}\)

\(\Rightarrow \) r bằng góc giới hạn của lăng kính \(\Rightarrow \) r = igh.

Góc tới r' = A - r = A - igh

Góc ló i': \(sini'{\rm{ }} = {\rm{ }}nsinr'{\rm{ }} = {\rm{ }}nsin\left( {A{\rm{ }} - {\rm{ }}r} \right){\rm{ }}\)

\(= > {\rm{ }}sin\left( {A{\rm{ }} - {\rm{ }}r} \right){\rm{ }} = {\rm{ }}{1 \over n}{\rm{ }}sini'\)

Dùng công thức lượng giác:

\(\sin A\cos r - \sin {\rm{rcosA = }}{{\sin i'} \over n}\)

\( \Leftrightarrow \sin A.\sqrt {1 - {\mathop{\rm s}\nolimits} {\rm{i}}{{\rm{n}}^2}{\rm{r}}} - \sin r\cos A = {{\sin i'} \over n}\)

\( \Leftrightarrow \sin A.\sqrt {1 - {1 \over {{n^2}}}} - {1 \over n}{\rm{cosA = }}{{\sin i'} \over n}\)

\( \Leftrightarrow \sin A.{{\sqrt {{n^2} - 1} } \over n} - {1 \over n}{\rm{cosA = }}{{\sin i'} \over n}\)

\( \Rightarrow \sin i' = \sin A.\sqrt {{n^2} - 1} - c{\rm{osA}}\)

Từ đây ta tìm dược góc i' và vẽ tia ló.

Copyright © 2021 HOCTAP247