Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Phát biểu các điều kiện để hàm số đồng biến, nghịch biến. Tìm các khoảng đơn điệu của các hàm số:

\(y =  - {x^3} + 2{x^2} - x - 7\)

 \(y = {{x - 5} \over {1 - x}}\)

Hướng dẫn giải

Cho hàm số \(y=f(x)\) có đạo hàm trên khoảng \((a; \, b).\)

a) Nếu \(f'(x)> 0\) với mọi  \(a \in(a; \, b).=\) thì hàm số \(f(x)\) đồng biến trên khoảng đó.

b) Nếu \(f'(x)< 0\) với mọi  \(a \in(a; \, b).=\) thì hàm số \(f(x)\) nghịch biến trên khoảng đó.

Lời giải chi tiết

*Xét hàm số: \(y =  - {x^3} +2{x^2} - x - 7\)

Tập xác định: \(D =\mathbb R\)

Ta có: \(y' =  - 3{x^2} + 4x - 1 \Rightarrow y' = 0\)

\(\begin{array}{l}
\Leftrightarrow - 3{x^2} + 4x - 1 = 0 \Leftrightarrow \left( {3x - 1} \right)\left( {x - 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
3x - 1 = 0\\
x - 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \frac{1}{3}\\
x = 1
\end{array} \right..
\end{array}\)

Hàm số đồng biến \( \Leftrightarrow y' > 0 \Leftrightarrow  - 3{x^2} + 4x - 1 > 0\)

\(\begin{array}{l}
\Leftrightarrow 3{x^2} - 4x + 1 < 0 \Leftrightarrow \left( {3x - 1} \right)\left( {x - 1} \right) < 0\\
\Leftrightarrow \frac{1}{3} < x < 1.
\end{array}\)

Hàm số đồng biến \( \Leftrightarrow y' < 0 \Leftrightarrow  - 3{x^2} + 4x - 1 < 0\)

\(\begin{array}{l}
\Leftrightarrow 3{x^2} - 4x + 1 > 0 \Leftrightarrow \left( {3x - 1} \right)\left( {x - 1} \right) > 0\\
\Leftrightarrow \left[ \begin{array}{l}
x > 1\\
x < \frac{1}{3}
\end{array} \right..
\end{array}\)

Vậy hàm số đồng biến trong \(({1 \over 3},1)\) và nghịch biến trong \(( - \infty ,{1 \over 3}) \) và \( (1, + \infty ).\)

b) Xét hàm số:  \(y = {{x - 5} \over {1 - x}} = \frac{x-5}{-x+1}\)

Tập xác định: \(D = \mathbb R \backslash {\rm{\{ }}1\} \)

Ta có: \(y' = \frac{1.1-5.1}{(1-x)^2}= {{ - 4} \over {{{(1 - x)}^2}}} < 0,\forall x \in D\)

Vậy hàm số nghịch biến trong từng khoảng \((-∞,1)\) và \((1, +∞)\).

Copyright © 2021 HOCTAP247