Câu hỏi 3 trang 17 SGK Hình học 12

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Chứng minh rằng tam giác IEF, IFM, IMN, INE, JEF, JFM, JMN và JNE là những tam giác đều cạnh bằng \({a \over 2}\)

Hướng dẫn giải

ABCD là tứ diện đều ⇒ tam giác ABC đều ⇒ AB = BC = CA = a

I, E, F lần lượt là trung điểm của các cạnh AC, AB, BC nên ta có IE, IF, EF là các đường trung bình của tam giác ABC

\(\eqalign{
& \Rightarrow IE = {1 \over 2}BC = {1 \over 2}a \cr
& {\rm{IF = }}{1 \over 2}AB = {1 \over 2}a \cr
& {\rm{EF = }}{1 \over 2}AC = {1 \over 2}a \cr} \)

Nên tam giác IEF là tam giác đều cạnh bằng \({a \over 2}\)

Chứng minh tương tự ta có: IFM, IMN, INE, JEF, JFM, JMN và JNE là những tam giác đều cạnh bằng \({a \over 2}\)

Copyright © 2021 HOCTAP247