Bài 29. Xác định đỉnh \(I\) của mỗi parabol \((P)\) sau đây. Viết công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ \(\overrightarrow {OI} \) và viết phương trình của parabol \((P)\) đối với hệ tọa độ \(IXY\).
a) \(y = 2{x^2} - 3x + 1;\) b) \(y = {1 \over 2}{x^2} - x - 3;\)
c) \(y = x - 4{x^2}\); d) \(y = 2{x^2} - 5\);
a) \(y' = 4x - 3;y' = 0 \Leftrightarrow x = {3 \over 4};y\left( {{3 \over 4}} \right) = - {1 \over 8}\)
Đỉnh \(I\left( {{3 \over 4}; - {1 \over 8}} \right)\)
Công thức chuyển trục tọa độ tịnh tiến theo
\(\overrightarrow {OI} :\left\{ \matrix{
x = X + {3 \over 4} \hfill \cr
y = Y - {1 \over 8} \hfill \cr} \right.\)
Phương trình của \((P)\) đối với hệ tọa độ \(IXY\) là
\(Y - {1 \over 8} = 2{\left( {X + {3 \over 4}} \right)^2} - 3\left( {X + {3 \over 4}} \right) + 1 \Leftrightarrow Y = 2{X^2}\)
b) \(y' = x - 1;y' = 0 \Leftrightarrow x = 1;y\left( 1 \right) = - {7 \over 2}\)
Đỉnh \(I\left( {1; - {7 \over 2}} \right)\)
Công thức chuyển trục tọa độ tịnh tiến theo
\(\overrightarrow {OI} :\left\{ \matrix{
x = 1 + X \hfill \cr
y = - {7 \over 2} + Y \hfill \cr} \right.\)
Phương trình của \((P)\) đối với hệ tọa độ \(IXY\) là
\(Y - {7 \over 2} = {1 \over 2}{\left( {X + 1} \right)^2} - \left( {X + 1} \right) - 3 \Leftrightarrow Y = {1 \over 2}{X^2}\)
c) \(y' = 1 - 8x;y' = 0 \Leftrightarrow x = {1 \over 8};y\left( {{1 \over 8}} \right) = {1 \over {16}}\)
Đỉnh \(I\left( {{1 \over 8};{1 \over {16}}} \right)\)
Công thức chuyển trục tọa độ tịnh tiến theo
\(\overrightarrow {OI} :\left\{ \matrix{
x = X + {1 \over 8} \hfill \cr
y = Y + {1 \over {16}} \hfill \cr} \right.\)
Phương trình của \((P)\) đối với hệ tọa độ \(IXY\) là
\(Y + {1 \over {16}} = X + {1 \over 8} - 4{\left( {X + {1 \over 8}} \right)^2} \Leftrightarrow Y = - 4{X^2}\)
d) \(y' = 4x;y' = 0 \Leftrightarrow x = 0;y\left( 0 \right) = - 5\)
Đỉnh \(I\left( {0; - 5} \right)\)
Công thức chuyển trục tọa độ tịnh tiến theo
\(\overrightarrow {OI} :\left\{ \matrix{
x = X \hfill \cr
y = Y - 5 \hfill \cr} \right.\)
Phương trình của \((P)\) đối với hệ tọa độ \(IXY\) là
\(Y - 5 = 2{X^2} - 5 \Leftrightarrow Y = 2{X^2}\)
Copyright © 2021 HOCTAP247