Bài 28 Trang 167 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 28. Tính diện tích hình phẳng giới hạn bởi:

a) Đồ thị các hàm số \(y = {x^2} - 4\), \(y =  - {x^2} - 2x\) và đường thẳng \(x =  - 3,x =  - 2;\)
b) Đồ thị hai hàm số \(y = {x^2}\) và \(y =  - {x^2} - 2x\)
c) Đồ thị hàm số \(y = {x^3} - 4x\), trục hoành, đường thẳng x=-2 và đường thẳng x=4

Hướng dẫn giải

a) Ta có

 

\(S = \int\limits_{ - 3}^{ - 2} {\left| {{x^2} - 4 - \left( { - {x^2} - 2x} \right)} \right|} dx = \int\limits_{ - 3}^{ - 2} {\left( {2{x^2} + 2x - 4} \right)} dx\)

\( = 2\int\limits_{ - 3}^{ - 2} {\left( {{x^2} + x - 2} \right)} dx\) vì \(({x^2} + x - 2 \ge 0 \Leftrightarrow x \le  - 2\) hoặc \(x \ge 1)\)

\( = 2\left. {\left( {{{{x^3}} \over 3} + {{{x^2}} \over 2} - 2x} \right)} \right|_{ - 3}^{ - 2} = {{11} \over 3}\)

b)Phương trình hoành độ giao điểm của hai đồ thị là:

\({x^2} - 4 = - {x^2} - 2x \Leftrightarrow {x^2} + x - 2 = 0 \Leftrightarrow \left[ \matrix{
x = - 2 \hfill \cr
x = 1 \hfill \cr} \right.\)

Do đó \(S = \int\limits_{ - 2}^1 {\left| {{x^2} - 4 - \left( { - {x^2} - 2x} \right)} \right|} dx = \int\limits_{ - 2}^1 {\left| {2{x^2} + 2x - 4} \right|} dx\)

\( =  - \int\limits_{ - 2}^1 {\left( {2{x^2} + 2x - 4} \right)} dx\) ( vì \( - 2 \le x \le 1 \Leftrightarrow 2{x^2} + 2x - 4 \le 0\))

\( = \int\limits_{ - 2}^1 {\left( { - 2{x^2} - 2x + 4} \right)} dx = \left. {\left( { - {{2{x^3}} \over 3} - {x^2} + 4x} \right)} \right|_{ - 2}^1 = 9\)

c) \(S = \int\limits_{ - 2}^4 {\left| {{x^3} - 4x} \right|} dx = \int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)} dx - \int\limits_0^2 {\left( {{x^3} - 4x} \right)} dx + \int\limits_2^4 {\left( {{x^3} - 4x} \right)} dx = 44\)

Copyright © 2021 HOCTAP247