Bài 30 trang 206 SGK giải tích 12 nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 30. Gọi M, M’ là các điểm trong mặt phẳng phức theo thứ tự biểu diễn các số \(z = 3 + i;\,z' = \left( {3 - \sqrt 3 } \right) + \left( {1 + 3\sqrt 3 } \right)i.\)

a) Tính \({{z'} \over z};\)

b) Chứng minh rằng hiệu số acgumen của z’ với acgumen của z là một số đo của góc lượng giác \(\left( {OM,OM'} \right)\). Tính số đo đó.

Hướng dẫn giải

\(a)\,{{z'} \over z} = {{\left[ {3 - \sqrt 3  + \left( {1 + 3\sqrt 3 } \right)i} \right]\left( {3 - i} \right)} \over {10}} = 1 + \sqrt 3 i\)

b) Xét tia Ox thì ta có: \(sđ\left( {OM,OM'} \right) = sđ\left( {Ox,OM'} \right) - sđ\left( {Ox,OM} \right)\)

                             \( = \varphi ' - \varphi  = acgumen{{z'} \over z}\) (sai khác \(k2\pi \))

(trong đó \(\varphi \) và \(\varphi '\) theo thứ tự là acgumen của z và z’).

Từ đó do \({{z'} \over z} = 1 + \sqrt 3 i\) có acgumen là \({\pi  \over 3} + k2\pi \,\,\left( {k \in Z} \right)\), nên góc lượng giác \(\left( {OM,OM'} \right)\) có số đo \({\pi  \over 3} + k2\pi \,\,\left( {k \in\mathbb Z} \right)\)

Copyright © 2021 HOCTAP247