Tóm tắt bài
Đề bài
Bài 12. Cho một khối tứ diện đều. Hãy chứng minh rằng:
a) Các trọng tâm của các mặt của nó là các đỉnh của một khối tứ diện đều.
b) Các trung điểm của các cạnh của nó là các đỉnh của một khối tám mặt đều.
Hướng dẫn giải
a)
Gọi \(A’, B’, C’, D’\) lần lượt là trọng tâm của tam giác \(BCD, CDA, BDA, ABC\) của tứ diện đều \(ABCD\) có trọng tâm \(G\).
Ta có \(\overrightarrow {GA'} = - {1 \over 3}\overrightarrow {GA} \)
Gọi \({V_{\left( {G;{{ - 1} \over 3}} \right)}}\) là phép vị tự tâm \(G\) tỉ số \( - {1 \over 3}\) ta có \(A’, B’, C’, D’\) lần lượt là ảnh của \(A, B, C, D\) qua phép vị tự \(V\). Từ đó suy ra \({{A'B'} \over {AB}} = {{B'C'} \over {BC}} = {{C'D'} \over {CD}} = {{D'A'} \over {DA}} = {{A'C'} \over {AC}} = {{B'D'} \over {BD}} = {1 \over 3}\)
Do đó nếu \(ABCD\) là tứ diện đều thì \(A’B’C’D’\) cũng là tứ diện đều.
b)