Bài 22 trang 28 SGK Hình học 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 22. Cho khối lăng trụ tam giác đều \(ABC.A'B’C\). Gọi \(M\) là trung điểm của \(AA’\). Mặt phẳng đi qua \(M, B’, C\) chia khối lăng trụ thành hai phần. Tính tỉ số thể tích của hai phần đó.

Hướng dẫn giải


Gọi độ dài cạnh đáy của lăng trụ là \(a\), độ dài cạnh bên của lăng trụ là \(b\).
Kẻ đường cao \(CH\) của tam giác \(ABC\) thì \(CH \bot \left( {ABB'A'} \right),CH = {{a\sqrt 3 } \over 2}\)
Diện tích hình thang \(ABB’M\) là: \({S_{ABB'M}} = {1 \over 2}\left( {AM + BB'} \right)AB = {1 \over 2}\left( {{b \over 2} + b} \right).a = {{3ab} \over 4}\)
Thể tích khối chóp \(C.ABB’M\) là: \({V_{C.ABB'M}} = {1 \over 3}{S_{ABB'M}}.CH = {1 \over 3}{{3ab} \over 4}.{{a\sqrt 3 } \over 2} = {{{a^2}b\sqrt 3 } \over 8}\)
Thể tích khối lăng trụ là: \({V_{ABC.A'B'C'}} = {S_{ABC}}.AA' = {{{a^2}\sqrt 3 } \over 4}.b = {{{a^2}b\sqrt 3 } \over 4} = 2{V_{C.ABB'M}}\)
Vậy \({V_{C.ABB'M}} = {V_{B'.A'C'CM}}\)
Chú ý:

Copyright © 2021 HOCTAP247