Bài 4 trang 31 SGK Hình học 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 4. Cho khối làng trụ đứng \(ABC.A’B'C’\) có diện tích đáy bằng \(S\) và \(AA' = h\). Một mặt phẳng \((P)\) cắt các cạnh \(AA', BB’, CC'\) lần lượt tại \({A_1},{B_1}\) và . Biết \(A{A_1} = a,B{B_1} = b,CC' = c\).

a) Tính thể tích hai phần của khối lăng trụ được phân chia bởi mặt phẳng \((P)\).

b) Với điều kiện nào của \(a, b, c\) thì thể tích hai phần đó bằng nhau ?

Hướng dẫn giải

a) Kẻ đường cao \(AI\) của tam giác \(ABC\) thì \(AI \bot \left( {BCC'B'} \right)\) \(\Rightarrow AI = d\left( {{A_1};\left( {BCC'B'} \right)} \right)\). Ta có:

\(\eqalign{
& {V_{_{ABC.{A_1}{B_1}{C_1}}}} = {V_{{A_1}.ABC}} + {V_{{A_1}BC{C_1}{B_1}}} \cr
& = {1 \over 3}{\rm{aS + }}{1 \over 3}{S_{BC{C_1}{B_1}}}.AI \cr
& = {1 \over 3}aS + {1 \over 3}.{1 \over 2}\left( {b + c} \right).BC.AI \cr
& = {1 \over 3}aS + {1 \over 3}\left( {b + c} \right)S = {1 \over 3}\left( {a + b + c} \right)S \cr
& {V_{{A_1}{B_1}{C_1}A'B'C'}} = {V_{ABC.A'B'C'}} - {V_{ABC.{A_1}{B_1}{C_1}}} \cr
& = Sh - {1 \over 3}\left( {a + b + c} \right)S = {1 \over 3}\left[ {\left( {h - a} \right) + \left( {h - c} \right) + \left( {h - c} \right)} \right]S \cr} \)

b) \({V_{ABC.{A_1}{B_1}{C_1}}} = {V_{{A_1}{B_1}{C_1}.A'B'C'}} \Leftrightarrow {1 \over 3}\left( {a + b + a} \right)S = {1 \over 2}Sh \Leftrightarrow 3h = 2\left( {a + b + c} \right)\)

Copyright © 2021 HOCTAP247