Bài 2 trang 63 SGK Hình học 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 2. Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp \(S.ABC\), biết \(SA = SB = SC = a\), \(\widehat {ASB} = {60^0},\widehat {BSC} = {90^0},\widehat {CSA} = {120^0}\).

Hướng dẫn giải


Áp dụng định lí Cosin trong tam giác \(SAB, SAC\) ta có:

\(\eqalign{
& A{B^2} = S{A^2} + S{B^2} - 2SA.SB.\cos {60^0} \cr
& = {a^2} + {a^2} - 2{a^2}.{1 \over 2} = {a^2} \Rightarrow AB = a \cr
& A{C^2} = S{A^2} + S{C^2} - 2SA.SC.\cos {120^0} \cr
& = {a^2} + {a^2} - 2{a^2}\left( { - {1 \over 2}} \right) = 3{a^2} \Rightarrow AC = a\sqrt 3 \cr} \)

Trong tam giác vuông \(SBC\) có: \(B{C^2} = S{B^2} + S{C^2} = 2{a^2} \Rightarrow BC = a\sqrt 2 \)

Ta có: \(A{C^2} = A{B^2} + B{C^2} \Rightarrow \Delta ABC\) vuông tại \(B\).

Gọi \(H\) là trung điểm của \(AC\) thì \(H\) là tâm đường tròn ngoại tiếp tam giác ABC.

Vì \(SA = SB = SC\) nên \(SH \bot mp\left( {ABC} \right)\)

Và \(S{H^2} = S{C^2} - H{C^2} = {a^2} - {\left( {{{a\sqrt 3 } \over 2}} \right)^2} = {{{a^2}} \over 4} \Rightarrow SH = {a \over 2}\)

Gọi \(O\) là điểm đối xứng của \(S\) qua \(H\) thì \(SO = OA = OB = OC = a\) nên mặt cầu ngoại tiếp hình chóp \(S.ABC\) có tâm \(O\) và bán kính \(R = a\).

Copyright © 2021 HOCTAP247