Câu 3 trang 157 SGK Vật Lý 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 3. Cho đoạn mạch RLC nối tiếp có \(R = 50\,\Omega ;L = 159\,mH,C = 31,8\,\mu F.\) Điện áp giữa hai đầu đoạn mạch có biểu thức \(u = 120\cos 100\pi t(V).\) Tính tổng trở của đoạn mạch và viết biểu thức của cường độ dòng điện tức thời qua đoạn mạch.

Hướng dẫn giải

Đoạn mạch RLC nối tiếp có \(R = 50\Omega ;L = 159mH,C = 31,8\mu F.\)

\(u = 120\cos 100\pi t(V) \Rightarrow {U_0} = 120(V);\omega = 100\pi (rad/s)\)

Ta có :\({Z_L} = L\omega = {159.10^{ - 3}}.100\pi = 50(\Omega )\)

\({Z_C} = {1 \over {C\omega }} = {1 \over {31,{{8.10}^{ - 6}}.100\pi }} = 100(\Omega )\)

\( \Rightarrow \) \(Z = \sqrt {{R^2} + {{({Z_L} - {Z_C})}^2}} = \sqrt {{{50}^2} + {{(50 - 100)}^2}} = 50\sqrt 2 (\Omega )\)

\( \Rightarrow \) \({I_0} = {{{U_0}} \over {{Z_{AB}}}} = {{120} \over {50\sqrt 2 }} = 1,2\sqrt 2 (A)\)

\(\tan \varphi = {{{Z_L} - {Z_C}} \over R} = {{50 - 100} \over {50}} = - 1 \Rightarrow \varphi = {{ - \pi } \over 4}\)      

Vậy : \(i = {I_0}\cos (100\pi t - \varphi ) \Leftrightarrow i = 1,2\sqrt 2 \cos (100\pi t + {\pi \over 4})(A).\)

Copyright © 2021 HOCTAP247