Cho \(a,\,\,b\) là hai số thực. Các mệnh đề \(a > b,\,\,a < b,\,\,a \ge b,\,\,a \le b\) được gọi là những bất đẳng thức.
* \(a > b\) và \(b > c \Rightarrow a > c\)
* \(a > b \Leftrightarrow a + c > b + c\)
* \(a > b\) và \(c > d \Rightarrow a + c > b + d\)
* Nếu \(c > 0\) thì \(a > b \Leftrightarrow ac > bc\)
Nếu \(c < 0\) thì \(a > b \Leftrightarrow ac < bc\)
* \(a > b \ge 0 \Rightarrow \sqrt a > \sqrt b \)
* \(a \ge b \ge 0 \Leftrightarrow {a^2} \ge {b^2}\)
*\(a > b \ge 0 \Rightarrow {a^n} > {b^n}\)
* \( - \left| a \right| \le a \le \left| a \right|\) với mọi số thực \(a\) .
* \(\left| x \right| < a \Leftrightarrow - a < x < a\) ( Với \(a > 0\))
* \(\left| x \right| > a \Leftrightarrow \left[ \begin{array}{l}x > a\\x < - a\end{array} \right.\) ( Với \(a > 0\))
Cho \(a \ge 0,\,\,b \ge {\rm{0}}\), ta có \(\frac{{a + b}}{2} \ge \sqrt {ab} \). Dấu '=' xảy ra khi và chỉ khi \(a = b\)
Hệ quả:
* Hai số dương có tổng không đổi thì tích lớn nhất khi hai số đó bằng nhau
* Hai số dương có tích không đổi thì tổng nhỏ nhất khi hai số đó bằng nhau
Cho \(a \ge 0,\,\,b \ge 0,\,\,c \ge 0\), ta có \(\frac{{a + b + c}}{3} \ge \sqrt[3]{{abc}}\). Dấu '=' xảy ra khi và chỉ khi \(a = b = c\)
Để chứng minh bất đẳng thức(BĐT) \(A \ge B\) ta có thể sử dụng các cách sau:
Ta đi chứng minh \(A - B \ge 0\). Để chứng minh nó ta thường sử dụng các hằng đẳng thức để phân tích \(A - B\) thành tổng hoặc tích của những biểu thức không âm.
Xuất phát từ BĐT đúng, biến đổi tương đương về BĐT cần chứng minh.
Loại 1: Biến đổi tương đương về bất đẳng thức đúng
Cho hai số thực \(a,b,c\). Chứng minh rằng các bất đẳng thức sau
a) \(ab \le \frac{{{a^2} + {b^2}}}{2}\)
b) \(ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\)
c) \(3\left( {{a^2} + {b^2} + {c^2}} \right) \ge {\left( {a + b + c} \right)^2}\)
d) \({\left( {a + b + c} \right)^2} \ge 3\left( {ab + bc + ca} \right)\)
a) Ta có \({a^2} + {b^2} - 2ab = {(a - b)^2} \ge 0 \Rightarrow {a^2} + {b^2} \ge 2ab\). Đẳng thức\( \Leftrightarrow a = b\).
b) Bất đẳng thức tương đương với \({\left( {\frac{{a + b}}{2}} \right)^2} - ab \ge 0\)
\( \Leftrightarrow {a^2} + 2ab + {b^2} \ge 4ab \Leftrightarrow {\left( {a - b} \right)^2} \ge 0\) (đúng) ĐPCM.
Đẳng thức xảy ra\( \Leftrightarrow a = b\)
c) BĐT tương đương \(3\left( {{a^2} + {b^2} + {c^2}} \right) \ge {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\)
\( \Leftrightarrow {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} \ge 0\) (đúng) ĐPCM.
Đẳng thức xảy ra\( \Leftrightarrow a = b = c\)
d) BĐT tương đương \({a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca \ge 3\left( {ab + bc + ca} \right)\)
\( \Leftrightarrow 2\left( {{a^2} + {b^2} + {c^2}} \right) - 2\left( {ab + bc + ca} \right) \ge 0\) \( \Leftrightarrow {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} \ge 0\) (đúng) ĐPCM.
Đẳng thức xảy ra\( \Leftrightarrow a = b = c\)
Nhận xét: Các BĐT trên được vận dụng nhiều, và được xem như là "bổ đề" trong chứng minh các bất đẳng thức khác.
Cho năm số thực \(a,b,c,d,e\). Chứng minh rằng
\({a^2} + {b^2} + {c^2} + {d^2} + {e^2} \ge a(b + c + d + e)\).
Ta có : \({a^2} + {b^2} + {c^2} + {d^2} + {e^2} - a(b + c + d + e) = \)
\( = (\frac{{{a^2}}}{4} - ab + {b^2}) + (\frac{{{a^2}}}{4} - ac + {c^2}) + (\frac{{{a^2}}}{4} - ad + {d^2}) + (\frac{{{a^2}}}{4} - ae + {e^2})\)
\( = {(\frac{a}{2} - b)^2} + {(\frac{a}{2} - c)^2} + {(\frac{a}{2} - d)^2} + {(\frac{a}{2} - e)^2} \ge 0 \Rightarrow \) đpcm.
Đẳng thức xảy ra \( \Leftrightarrow b = c = d = e = \frac{a}{2}\).
Loại 2: Xuất phát từ một BĐT đúng ta biến đổi đến BĐT cần chứng minh
Đối với loại này thường cho lời giải không được tự nhiên và ta thường sử dụng khi các biến có những ràng buộc đặc biệt
* Chú ý hai mệnh đề sau thường dùng
\(a \in \left[ {\alpha ;\beta } \right] \Rightarrow \left( {a - \alpha } \right)\left( {a - \beta } \right) \le 0\) \(\left( * \right)\)
\(a,b,c \in \left[ {\alpha ;\beta } \right] \Rightarrow \left( {a - \alpha } \right)\left( {b - \alpha } \right)\left( {c - \alpha } \right) + \left( {\beta - a} \right)\left( {\beta - b} \right)\left( {\beta - c} \right) \ge 0\left( {**} \right)\)
Cho a,b,c là độ dài ba cạnh tam giác. Chứng minh rằng :\({a^2} + {b^2} + {c^2} < 2(ab + bc + ca)\).
Vì a,b,c là độ dài ba cạnh tam giác nên ta có :
\(a + b > c \Rightarrow ac + bc > {c^2}\). Tương tự
\(bc + ba > {b^2};{\rm{ }}ca + cb > {c^2}\) cộng ba BĐT này lại với nhau ta có đpcm
Nhận xét:
* Ở trong bài toán trên ta đã xuất phát từ BĐT đúng đó là tính chất về độ dài ba cạnh của tam giác. Sau đó vì cần xuất hiện bình phương nên ta nhân hai vế của BĐT với c.
Ngoài ra nếu xuất phát từ BĐT \(|a - b| < c\) rồi bình phương hai vế ta cũng có được kết quả.
Cho \(a,b,c \in [0;1]\). Chứng minh : \({a^2} + {b^2} + {c^2} \le 1 + {a^2}b + {b^2}c + {c^2}a\)
Cách 1:
Vì \(a,b,c \in [0;1] \Rightarrow (1 - {a^2})(1 - {b^2})(1 - {c^2}) \ge 0\)
\( \Leftrightarrow 1 + {a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2} - {a^2}{b^2}{c^2} \ge {a^2} + {b^2} + {c^2}\) (*)
Ta có : \({a^2}{b^2}{c^2} \ge 0;{\rm{ }}{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2} \le {a^2}b + {b^2}c + {c^2}a\) nên từ (*) ta suy ra
\({a^{\rm{2}}} + {b^2} + {c^2} \le 1 + {a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2} \le 1 + {a^2}b + {b^2}c + {c^2}a\) đpcm.
Cách 2:
BĐT cần chứng minh tương đương với \({{\rm{a}}^{\rm{2}}}\left( {1 - b} \right) + {b^2}\left( {1 - c} \right) + {c^2}\left( {1 - a} \right) \le 1\)
Mà \(a,b,c \in \left[ {0;1} \right]\) \( \Rightarrow {a^2} \le a,{b^2} \le b,{c^2} \le c\) do đó
\({a^2}\left( {1 - b} \right) + {b^2}\left( {1 - c} \right) + {c^2}\left( {1 - a} \right) \le a\left( {1 - b} \right) + b\left( {1 - c} \right) + c\left( {1 - a} \right)\)
Ta chỉ cần chứng minh \(a\left( {1 - b} \right) + b\left( {1 - c} \right) + c\left( {1 - a} \right) \le 1\)
Thật vậy: vì \(a,b,c \in \left[ {0;1} \right]\) nên theo nhận xét \(\left( {**} \right)\) ta có
\(abc + \left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right) \ge 0\)
\( \Leftrightarrow \)\(a + b + c - \left( {ab + bc + ca} \right) \le 1\)
\( \Leftrightarrow \)\(a\left( {1 - b} \right) + b\left( {1 - c} \right) + c\left( {1 - a} \right) \le 1\)
vậy BĐT ban đầu được chứng minh.
Một số chú ý khi sử dụng bất đẳng thức côsi:
* Khi áp dụng bđt côsi thì các số phải là những số không âm
* BĐT côsi thường được áp dụng khi trong BĐT cần chứng minh có tổng và tích
* Điều kiện xảy ra dấu ‘=’ là các số bằng nhau
* Bất đẳng thức côsi còn có hình thức khác thường hay sử dụng
Đối với hai số:\({x^2}\,\, + \,{y^2}\,\, \ge \,\,2xy;\,\,\,\,\,\,\,\,{x^2}\,\, + \,{y^2}\,\, \ge \,\,\frac{{{{(x\, + \,y)}^2}}}{2};\,\,\,\,\,\,\,xy \le \,\,{\left( {\frac{{x + y}}{2}} \right)^2}\).
Đối với ba số: \(abc \le \frac{{{a^3} + {b^3} + {c^3}}}{3},\,\,abc \le {\left( {\frac{{a + b + c}}{3}} \right)^3}\)
Loại 1: Vận dụng trực tiếp bất đẳng thức côsi
Cho \(a,b\) là số dương thỏa mãn \({a^2} + {b^2} = 2\). Chứng minh rằng
a) \(\left( {\frac{a}{b} + \frac{b}{a}} \right)\left( {\frac{a}{{{b^2}}} + \frac{b}{{{a^2}}}} \right) \ge 4\)
b) \({\left( {a + b} \right)^5} \ge 16ab\sqrt {\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)} \)
a) Áp dụng BĐT côsi ta có
\(\frac{a}{b} + \frac{b}{a} \ge 2\sqrt {\frac{a}{b}.\frac{b}{a}} = 2,\,\,\frac{a}{{{b^2}}} + \frac{b}{{{a^2}}} \ge 2\sqrt {\frac{a}{{{b^2}}}.\frac{b}{{{a^2}}}} = \frac{2}{{\sqrt {ab} }}\)
Suy ra \(\left( {\frac{a}{b} + \frac{b}{a}} \right)\left( {\frac{a}{{{b^2}}} + \frac{b}{{{a^2}}}} \right) \ge \frac{4}{{\sqrt {ab} }}\) (1)
Mặt khác ta có \(2 = {a^2} + {b^2} \ge 2\sqrt {{a^2}{b^2}} = 2ab \Rightarrow ab \le 1\) (1)
Từ (1) và (2) suy ra \(\left( {\frac{a}{b} + \frac{b}{a}} \right)\left( {\frac{a}{{{b^2}}} + \frac{b}{{{a^2}}}} \right) \ge 4\) ĐPCM.
Đẳng thức xảy ra khi và chỉ khi \(a = b = 1\).
b) Ta có \({\left( {a + b} \right)^5} = \left( {{a^2} + 2ab + {b^2}} \right)\left( {{a^3} + 3a{b^2} + 3{a^2}b + {b^3}} \right)\)
Áp dụng BĐT côsi ta có
\({a^2} + 2ab + {b^2} \ge 2\sqrt {2ab\left( {{a^2} + {b^2}} \right)} = 4\sqrt {ab} \) và \(\left( {{a^3} + 3a{b^2}} \right) + \left( {3{a^2}b + {b^3}} \right) \ge 2\sqrt {\left( {{a^3} + 3a{b^2}} \right)\left( {3{a^2}b + {b^3}} \right)} = 4\sqrt {ab\left( {1 + {b^2}} \right)\left( {{a^2} + 1} \right)} \)
Suy ra \(\left( {{a^2} + 2ab + {b^2}} \right)\left( {{a^3} + 3a{b^2} + 3{a^2}b + {b^3}} \right) \ge 16ab\sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} \)
Do đó \({\left( {a + b} \right)^5} \ge 16ab\sqrt {\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)} \) ĐPCM.
Đẳng thức xảy ra khi và chỉ khi \(a = b = 1\).
Cho \(a,b,c\) là số dương. Chứng minh rằng
a) \(\left( {a + \frac{1}{b}} \right)\left( {b + \frac{1}{c}} \right)\left( {c + \frac{1}{a}} \right) \ge 8\)
b) \({a^2}(1 + {b^2}) + {b^2}(1 + {c^2}) + {c^2}(1 + {a^2}) \ge 6abc\)
c) \((1 + a)(1 + b)(1 + c) \ge {\left( {1 + \sqrt[3]{{abc}}} \right)^3}\)
d) \({a^2}\sqrt {bc} + {b^2}\sqrt {ac} + {c^2}\sqrt {ab} \le {a^3} + {b^3} + {c^3}\)
a) Áp dụng BĐT côsi ta có
\(a + \frac{1}{b} \ge 2\sqrt {\frac{a}{b}} ,\,\,b + \frac{1}{c} \ge 2\sqrt {\frac{b}{c}} ,\,\,c + \frac{1}{a} \ge 2\sqrt {\frac{c}{a}} \)
Suy ra \(\left( {a + \frac{1}{b}} \right)\left( {b + \frac{1}{c}} \right)\left( {c + \frac{1}{a}} \right) \ge 8\sqrt {\frac{a}{b}} .\sqrt {\frac{b}{c}} .\sqrt {\frac{c}{a}} = 8\) ĐPCM.
Đẳng thức xảy ra khi và chỉ khi \(a = b = c\).
b) Áp dụng BĐT côsi cho hai số dương ta có
\(1 + {a^2} \ge 2\sqrt {{a^2}} = 2a\), tương tự ta có \(1 + {b^2} \ge 2b,\,\,1 + {c^2} \ge 2c\)
Suy ra \({a^2}(1 + {b^2}) + {b^2}(1 + {c^2}) + {c^2}(1 + {a^2}) \ge 2\left( {{a^2}b + {b^2}c + {c^2}a} \right)\)
Mặt khác, áp dụng BĐT côsi cho ba số dương ta có
\({a^2}b + {b^2}c + {c^2}a \ge 3\sqrt {{a^2}b.{b^2}c.{c^2}a} = 3abc\)
Suy ra \({a^2}(1 + {b^2}) + {b^2}(1 + {c^2}) + {c^2}(1 + {a^2}) \ge 6abc\). ĐPCM.
Đẳng thức xảy ra khi và chỉ khi \(a = b = c = 1\).
c) Ta có \((1 + a)(1 + b)(1 + c) = 1 + \left( {ab + bc + ca} \right) + \left( {a + b + c} \right) + abc\)
Áp dụng BĐT côsi cho ba số dương ta có
\(ab + bc + ca \ge 3\sqrt[3]{{ab.bc.ca}} = 3{\left( {\sqrt[3]{{abc}}} \right)^2}\) và \(a + b + c \ge 3\sqrt[3]{{abc}}\)
Suy ra \((1 + a)(1 + b)(1 + c) \ge 1 + 3{\left( {\sqrt[3]{{abc}}} \right)^2} + 3\sqrt[3]{{abc}} + abc = {\left( {1 + \sqrt[3]{{abc}}} \right)^3}\) ĐPCM
Đẳng thức xảy ra khi và chỉ khi \(a = b = c\).
d) Áp dụng BĐT côsi cho hai số dương ta có
\({a^2}\sqrt {bc} \le {a^2}\left( {\frac{{b + c}}{2}} \right),\,\,\,{b^2}\sqrt {ac} \le {b^2}\left( {\frac{{a + c}}{2}} \right),\,\,{c^2}\sqrt {ab} \le {c^2}\left( {\frac{{a + b}}{2}} \right)\)
Suy ra \({a^2}\sqrt {bc} + {b^2}\sqrt {ac} + {c^2}\sqrt {ab} \le \frac{{{a^2}b + {b^2}a + {a^2}c + {c^2}a + {b^2}c + {c^2}b}}{2}\) (1)
Mặt khác theo BĐT côsi cho ba số dương ta có
\({a^2}b \le \frac{{{a^3} + {a^3} + {b^3}}}{3},\,\,{b^2}a \le \frac{{{b^3} + {b^3} + {a^3}}}{3},\,\,{a^2}c \le \frac{{{a^3} + {a^3} + {c^3}}}{3},\)
\({c^2}a \le \frac{{{c^3} + {c^3} + {a^3}}}{3},\,\,{b^2}c \le \frac{{{b^3} + {b^3} + {c^3}}}{3},\,\,{c^2}b \le \frac{{{c^3} + {c^3} + {b^3}}}{3}\)
Suy ra \({a^2}b + {b^2}a + {a^2}c + {c^2}a + {b^2}c + {c^2}b \le 2\left( {{a^3} + {b^3} + {c^3}} \right)\) (2)
Từ (1) và (2) suy ra \({a^2}\sqrt {bc} + {b^2}\sqrt {ac} + {c^2}\sqrt {ab} \le {a^3} + {b^3} + {c^3}\)
Đẳng thức xảy ra khi và chỉ khi \(a = b = c\).
Loại 2: Kĩ thuật tách, thêm bớt, ghép cặp
Cho \(a,b,c\) là số dương. Chứng minh rằng:
a) \(\frac{{ab}}{c} + \frac{{bc}}{a} + \frac{{ac}}{b} \ge a + b + c\)
b) \(\frac{a}{{{b^2}}} + \frac{b}{{{c^2}}} + \frac{c}{{{a^2}}} \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\)
a) Áp dụng BĐT côsi ta có \(\frac{{ab}}{c} + \frac{{bc}}{a} \ge 2\sqrt {\frac{{ab}}{c}.\frac{{bc}}{a}} = 2b\)
Tương tự ta có \(\frac{{bc}}{a} + \frac{{ac}}{b} \ge 2c,\,\,\frac{{ac}}{b} + \frac{{ba}}{c} \ge 2a\).
Cộng vế với vế các BĐT trên ta được
\(2\left( {\frac{{ab}}{c} + \frac{{bc}}{a} + \frac{{ac}}{b}} \right) \ge 2\left( {a + b + c} \right) \Leftrightarrow \frac{{ab}}{c} + \frac{{bc}}{a} + \frac{{ac}}{b} \ge a + b + c\) ĐPCM
Đẳng thức xảy ra khi \(a = b = c\) .
b) Áp dụng BĐT côsi ta có \(\frac{a}{{{b^2}}} + \frac{1}{a} \ge 2\sqrt {\frac{a}{{{b^2}}}.\frac{1}{a}} = \frac{2}{b}\)
Tương tự ta có \(\frac{b}{{{c^2}}} + \frac{1}{b} \ge \frac{2}{c},\,\,\frac{c}{{{a^2}}} + \frac{1}{c} \ge \frac{2}{a}\)
Cộng vế với vế các BĐT trên ta được
\(\frac{a}{{{b^2}}} + \frac{b}{{{c^2}}} + \frac{c}{{{a^2}}} + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{2}{a} + \frac{2}{b} + \frac{2}{c} \Leftrightarrow \frac{a}{{{b^2}}} + \frac{b}{{{c^2}}} + \frac{c}{{{a^2}}} \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\) ĐPCM.
Đẳng thức xảy ra khi \(a = b = c\) .
Trong phạm vi bài học HOCTAP247 chỉ giới thiệu đến các em khái niệm cơ bản về bất đẳng thức và phương pháp giải một số dạng toán cơ bản liên quan đến bất đẳng thức.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 10 Chương 4 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Xác định m để với mọi x ta có \( - 1 \le \frac{{{x^2} + 5x + m}}{{2{x^2} - 3x + 2}} < 7\)
Tìm m để \(f\left( x \right) = {x^2} - 2\left( {2m - 3} \right)x + 4m - 3 > 0,\;\;\forall x \in R\)?
Câu 5- Câu 11: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 10 Chương 4 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Đại số 10 Cơ bản và Nâng cao.
Bài tập 9 trang 110 SGK Toán 10 NC
Bài tập 10 trang 110 SGK Toán 10 NC
Bài tập 11 trang 110 SGK Toán 10 NC
Bài tập 12 trang 110 SGK Toán 10 NC
Bài tập 13 trang 110 SGK Toán 10 NC
Bài tập 14 trang 112 SGK Toán 10 NC
Bài tập 15 trang 112 SGK Toán 10 NC
Bài tập 16 trang 112 SGK Toán 10 NC
Bài tập 17 trang 112 SGK Toán 10 NC
Bài tập 18 trang 112 SGK Toán 10 NC
Bài tập 19 trang 112 SGK Toán 10 NC
Bài tập 20 trang 112 SGK Toán 10 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Copyright © 2021 HOCTAP247