Cho hai đường thẳng \(a\) và \(b\) trong không gian. Có các trường hợp sau đây xảy ra đối với \(a\) và \(b\):
Trường hợp 1: Có một mặt phẳng chứa cả \(a\) và \(b,\) khi đó theo kết quả tronh hình học phẳng ta có ba khả năng sau:
Trường hợp 2: Không có mặt phẳng nào chứa cả \(a\) và \(b\), khi đó ta nói \(a\) và \(b\) là hai đường thẳng chéo nhau.
Phương pháp:
Sử dụng tính chất: Nếu hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) có điểm chung \(M\)và lần lượt chứa hai đường thẳng song song \(d\) và \(d'\) thì giao tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\) là đường thẳng đi qua \(M\) song song với \(d\) và \(d'\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với các cạnh đáy là \(AB\) và \(CD\). Gọi \(I,J\) lần lượt là trung điểm của các cạnh \(AD\) và \(BC\) và \(G\) là trọng tâm của tam giác \(SAB\).
a) Tìm giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {IJG} \right)\).
b) Tìm điều kiện của \(AB\) và \(CD\) để thiết diện của \(\left( {IJG} \right)\) và hình chóp là một hình bình hành.
a) Ta có \(ABCD\) là hình thang và \(I,J\) là trung điểm của \(AD,BC\) nên \(IJ//AB\).
Vậy \(\left\{ \begin{array}{l}G \in \left( {SAB} \right) \cap \left( {IJG} \right)\\AB \subset \left( {SAB} \right)\\IJ \subset \left( {IJG} \right)\\A//IJ\end{array} \right.\)
\( \Rightarrow \left( {SAB} \right) \cap \left( {IJG} \right) = MN//IJ//AB\) với
\(M \in SA,N \in SB\).
b) Dễ thấy thiết diện là tứ giác \(MNJI\).
Do \(G\) là trọng tâm tam giác \(SAB\) và \(M//AB\)nên \(\frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3}\)
(\(E\) là trung điểm của \(AB\)).
\( \Rightarrow MN = \frac{2}{3}AB\).
Lại có \(IJ = \frac{1}{2}\left( {AB + CD} \right)\). Vì \(MN//IJ\) nên \(MNIJ\) là hình thang, do đó \(MNIJ\) là hình bình hành khi \(MN = IJ\)
\( \Leftrightarrow \frac{2}{3}AB = \frac{1}{2}\left( {AB + CD} \right) \Leftrightarrow AB = 3CD\).
Vậy thết diện là hình bình hành khi \(AB = 3CD\).
Phương pháp:
Để chứng minh hai đường thẳng song song ta có thể làm theo một trong các cách sau:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là một hình thang với đáy lớn \(AB\). Gọi \(M,N\) lần lượt là trung điểm của \(SA\) và \(SB\).
a) Chứng minh MN//CD.
b) Gọi \(P\) là giao điểm của \(SC\) và \(\left( {ADN} \right)\), \(I\) là giao điểm của \(AN\) và \(DP\). Chứng minh SI//CD.
a) Ta có \(MN\) là đường trung bình của tam giác \(SAB\) nên \(MN//AB\).
Lại có \(ABCD\) là hình thang \( \Rightarrow AB//CD\).
Vậy \(\left\{ \begin{array}{l}MN//AB\\CD//AB\end{array} \right. \Rightarrow MN//CD\).
b) Trong \(\left( {ABCD} \right)\) gọi \(E = AD \cap BC\), trong \(\left( {SCD} \right)\) gọi \(P = SC \cap EN\).
Ta có \(E \in AD \subset \left( {ADN} \right)\) \( \Rightarrow EN \subset \left( {AND} \right) \Rightarrow P \in \left( {ADN} \right)\).
Vậy \(P = SC \cap \left( {ADN} \right)\).
Do \(I = AN \cap DP \Rightarrow \left\{ \begin{array}{l}I \in AN\\I \in DP\end{array} \right. \Rightarrow \left\{ \begin{array}{l}I \in \left( {SAB} \right)\\I \in \left( {SCD} \right)\end{array} \right. \Rightarrow SI = \left( {SAB} \right) \cap \left( {SCD} \right)\).
Ta có \(\left\{ \begin{array}{l}AB \subset \left( {SAB} \right)\\CD \subset \left( {SCD} \right)\\AB//CD\\\left( {SAB} \right) \cap \left( {SCD} \right) = SI\end{array} \right. \Rightarrow SI//CD\).
Phương pháp:
Để chứng minh bốn điểm \(A,B,C,D\) đồng phẳng ta tìm hai đường thẳng \(a,b\) lần lượt đi qua hai trong bốn điểm trên và chứng minh \(a,b\) song song hoặc cắt nhau, khi đó \(A,B,C,D\) thuôc \(mp\left( {a,b} \right)\).
Để chứng minh ba đường thẳng \(a,b,c\)đồng qui ngoài cách chứng minh ở §1, ta có thể chứng minh \(a,b,c\) lần lượt là giao tuyến của hai trong ba mặt phẳng \(\left( \alpha \right),\left( \beta \right),\left( \delta \right)\) trong đó có hai giao tuyến cắt nhau. Khi đó theo tính chất về giao tuyến của ba mặt phẳng ta được \(a,b,c\) đồng qui.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là một tứ giác lồi. Gọi \(M,N,E,F\) lần lượt là trung điểm của các cạnh bên \(SA,SB,SC\) và \(SD\).
a) Chứng minh \(ME,NF,SO\)đồng quy.
b) Chứng minh M, N, E, F đồng phẳng.
a) Trong \(\left( {SAC} \right)\) gọi \(I = ME \cap SO\), dễ thấy \(I\) là trung điểm của \(SO\), suy ra \(FI\) là đường trung bình của tam giác \(SOD\).
Vậy \(FI//OD\).
Tương tự ta có \(NI//OB\) nên \(N,I,F\) thẳng hàng hay \(I \in NF\).
Vậy \(ME,NF,SO\) đồng qui.
b) Do \(ME \cap NF = I\) nên \(ME\) và \(NF\) xác định một mặt phẳng.
Suy ra \(M,N,E,F\) đồng phẳng.
Cho hình chóp \(S.ABC\). Gọi \({G_1},{G_2}\) lần lượt là trọng tâm các tam giác \(SBC\) và \(SAB\).
a) Chứng minh \({G_1}{G_2}//AC\).
b) Tìm giao tuyến của hai mặt phẳng \(\left( {B{G_1}{G_2}} \right)\) và \(\left( {ABC} \right)\).
a) Gọi \(M,N\) lần lượt là trung điểm của \(AB,BC\).
Do \({G_1},{G_2}\) là trọng tâm các tam giác \(SBC\) và \(SAB\) nên \(\frac{{S{G_1}}}{{SN}} = \frac{2}{3},\frac{{S{G_2}}}{{SM}} = \frac{2}{3}\)\( \Rightarrow \frac{{S{G_1}}}{{SN}} = \frac{{S{G_2}}}{{SM}}\)
\( \Rightarrow {G_1}{G_2}//MN\). Mặt khác \(MN//AC \Rightarrow {G_1}{G_2}//AC\).
b) Ta có \(\left\{ \begin{array}{l}B \in \left( {B{G_1}{G_2}} \right)\\{G_1}{G_2} \subset \left( {B{G_1}{G_2}} \right)\\AC \subset \left( {ABCD} \right)\\{G_1}{G_2}//AC\end{array} \right.\)
\( \Rightarrow \left( {B{G_1}{G_2}} \right) \cap \left( {ABCD} \right) = d//AC//{G_1}{G_2}.\)
Cho tứ diện đều \(ABCD\) cạnh \(a\). Gọi \(M,N\) lần lượt là trung điểm của \(CD\) và \(AB\).
a) Hãy xác định các điểm \(I \in AC\) và \(J \in DN\) sao cho \(IJ//BM\).
b) Tính \(IJ\) theo \(a\).
a) Trong \(\left( {BCD} \right)\), từ \(D\) kẻ đường thẳng song song với \(BM\) cắt \(BC\) tại \(K\). Nối \(K\) và \(N\) cắt \(AC\) tại \(I\). Trong \(\left( {IKD} \right)\), từ \(I\) kẻ đường thẳng song song với \(DK\) cắt \(DN\) tại \(J\).
Khi đó \(IJ//BM\).
b) Do \(BM\) là đường trung bình của tam giác \(CKD\) nên \(KD = 2BM = 2.\frac{{a\sqrt 3 }}{2} = a\sqrt 3 \).
Gọi \(H\) là trung điểm của \(BC\). Khi đó \(HN//AC \Rightarrow \frac{{NK}}{{NI}} = \frac{{KH}}{{HC}} = \frac{{3HC}}{{HC}} = 3\)\( \Rightarrow NK = 3NI \Rightarrow KD = 3IJ\)
\( \Rightarrow IJ = \frac{1}{3}KD = \frac{{a\sqrt 3 }}{3}\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang.Một mặt phẳng \(\left( \alpha \right)\) cắt các cạnh \(SA,SB,SC\) và \(SD\) lần lượt tại các điểm \(M,N,P,Q\).
a) Giả sử \(MN \cap PQ = I\), \(AB \cap CD = E\). Chứng minh \(I,E,S\) thẳng hàng.
b) Giả sử \(\Delta = \left( {IBC} \right) \cap \left( {IAD} \right)\) và \(\Delta \subset \left( \alpha \right)\).
Chứng minh \(MQ//NP//AB//CD\).
a) Ta có \(SE = \left( {SAB} \right) \cap \left( {SCD} \right)\)
\(I = MN \cap PQ \Rightarrow \left\{ \begin{array}{l}I \in MN \subset \left( {SAB} \right)\\I \in PQ \subset \left( {SCD} \right)\end{array} \right.\)
\( \Rightarrow I \in \left( {SAB} \right) \cap \left( {SCD} \right)\), hay \(I \in SE\).
b) Do \(\left\{ \begin{array}{l}I \in \left( {IAD} \right) \cap \left( {IBC} \right)\\AD//BC\\AD \subset \left( {IAD} \right)\\BC \subset \left( {IBC} \right)\end{array} \right.\)
\( \Rightarrow \left( {IAD} \right) \cap \left( {IBC} \right) = \Delta //AB//DC,I \in \Delta \)Mặt khác theo giả thiết \(\Delta \subset \left( \alpha \right)\) nên
\(\left\{ \begin{array}{l}\Delta \subset \left( \alpha \right)\\BC \subset \left( {SBC} \right)\\\Delta //BC\\\left( \alpha \right) \cap \left( {SBC} \right) = NP\end{array} \right. \Rightarrow NP//BC//\Delta \)
Tương tự ta cũng có \(MQ//AD//\Delta \).
Vậy \(MQ//NP//BC//AD//\Delta \).
Nội dung bài học sẽ giúp các em biết cách xác định vị trí tương đối của hai đường thẳng trong không gian và phương pháp giải những dạng toán liên quan với ví dụ minh họa, sẽ giúp các em dễ dàng nắm được nội dung bài học và phương pháp giải toán.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 11 Chương 2 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 4- Câu 10: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 11 Chương 2 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK hình học 11 Cơ bản và Nâng cao.
Bài tập 2.10 trang 67 SBT Hình học 11
Bài tập 2.11 trang 67 SBT Hình học 11
Bài tập 2.12 trang 67 SBT Hình học 11
Bài tập 2.13 trang 68 SBT Hình học 11
Bài tập 2.14 trang 68 SBT Hình học 11
Bài tập 2.15 trang 68 SBT Hình học 11
Bài tập 17 trang 55 SGK Hình học 11 NC
Bài tập 18 trang 55 SGK Hình học 11 NC
Bài tập 19 trang 55 SGK Hình học 11 NC
Bài tập 20 trang 55 SGK Hình học 11 NC
Bài tập 21 trang 55 SGK Hình học 11 NC
Bài tập 22 trang 55 SGK Hình học 11 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Copyright © 2021 HOCTAP247