Biết hai số 3^a.5^2 và 3^3.5^b có ƯCLN là 3^3.5^2 và BCNN là

Câu hỏi :

Biết hai số 3a.52 và 33.5b có ƯCLN là 33.52 và BCNN là 34.53. Tìm a và b.

* Đáp án

* Hướng dẫn giải

ƯCLN (3a.52; 33.5b). BCNN = (3a.52; 33.5b) = (33.53).(34.53)

= (33.34).(52.53) = 33+4.52+337.55

Tích của 2 số đã cho: (3a.52).(33.5b) = (3a.33).(52.5b) = 3a+3.5b+2

Ta có tích của hai số bằng tích của ƯCLN và BCNN của hai số ấy nên:

37.55= 3a+3.5b+2. Do đó: a + 3 = 7 ⇒ a = 7 – 3 = 4

và  b + 2 = 5 ⇒ b = 5 -2

Vậy a = 4 và b = 3.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập cuối Chương 2 trang 56 !!

Số câu hỏi: 36

Copyright © 2021 HOCTAP247