A.0,42 rad.
B.0,48 rad.
C.0,52 rad.
D.0,32 rad.
Từ đồ thị ta có:
Khi \[\varphi = 0 \to {P_{ma{\rm{x}}}} = {P_0} = \frac{{{U^2}}}{R}\,\,\,\,\left( 1 \right)\]
Khi \[\varphi = {\varphi _1} \to P = \frac{3}{4}{P_0} = UI\cos \varphi = \frac{{{U^2}}}{{{Z^2}}}R\,\,\,\,\,\left( 2 \right)\]
Từ (1) và (2) ta suy ra: \[\frac{3}{4}\frac{{{U^2}}}{R} = \frac{{{U^2}}}{{{Z^2}}}R\]
\[ \Rightarrow 3{{\rm{Z}}^2} = 4{{\rm{R}}^2} \Leftrightarrow 3\left( {{R^2} + Z_L^2} \right) = 4{{\rm{R}}^2} \Rightarrow {Z_L} = \frac{R}{{\sqrt 3 }}\]
Lại có: \[\tan {\varphi _1} = \frac{{{Z_L}}}{R} = \frac{1}{{\sqrt 3 }} \Rightarrow {\varphi _1} = \frac{\pi }{6}\;rad\]
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247