Cho f (x) = ax^2 + bx + c ( a ≠ 0 ) . Điều kiện để f(x) >0 , với mọi x thuộc R là

Câu hỏi :

Cho \[f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right).\] Điều kiện để f(x) >0\[,\forall x \in R\] là

A.\(\left\{ {\begin{array}{*{20}{c}}{a >0}\\{\Delta \le 0}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{a >0}\\{\Delta \ge 0}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{c}}{a >0}\\{\Delta < 0}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta >0}\end{array}} \right.\)

* Đáp án

* Hướng dẫn giải

Ta có:\[f\left( x \right) >0\,,\forall x \in \mathbb{R}\] khi a >0 và \[\Delta < 0.\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Dấu của tam thức bậc hai !!

Số câu hỏi: 18

Copyright © 2021 HOCTAP247