Câu hỏi :

Cho các tam thức \[f\left( x \right) = 2{x^2} - 3x + 4;\,g\left( x \right) = - {x^2} + 3x - 4;\,h\left( x \right) = 4 - 3{x^2}\]. Số tam thức đổi dấu trên RR là:

A.0

B.1

C.2

D.3

* Đáp án

* Hướng dẫn giải

Vì f(x) = 0 vô nghiệm do \[{\rm{\Delta }} = 9 - 4.2.4 = - 23 < 0\]

g(x) = 0 vô nghiệm do \[{\rm{\Delta }} = 9 - 4.\left( { - 1} \right).\left( { - 4} \right) = - 7 < 0\]

h(x) = 0 có hai nghiệm phân biệt do:

\[4 - 3{x^2} = 0 \Leftrightarrow 3{x^2} = 4 \Leftrightarrow {x^2} = \frac{4}{3} \Leftrightarrow x = \pm \frac{2}{{\sqrt 3 }}\]

Nên chỉ có h(x) đổi dấu trên \[\mathbb{R}\].

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Dấu của tam thức bậc hai !!

Số câu hỏi: 18

Copyright © 2021 HOCTAP247