A.\[{\rm{D}} = \left[ { - 4; - 1} \right) \cup \left( { - \frac{1}{2}; + \infty } \right).\]
B. \[{\rm{D}} = \left( { - \infty ; - 4} \right] \cup \left( { - 1; - \frac{1}{2}} \right).\]
C. \[{\rm{D}} = \left( { - \infty ; - 4} \right] \cup \left( { - \frac{1}{2}; + \infty } \right).\]
D. \[{\rm{D}} = \left[ { - 4; - \frac{1}{2}} \right).\]
Hàm số xác định khi và chỉ khi \[f\left( x \right) = \frac{{{x^2} + 5x + 4}}{{2{x^2} + 3x + 1}} \ge 0.\]
Phương trình\[{x^2} + 5x + 4 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 1}\\{x = - 4}\end{array}} \right.\] và\[2{x^2} + 3x + 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 1}\\{x = - \frac{1}{2}}\end{array}} \right.\]
Bảng xét dấu
Dựa vào bảng xét dấu ta thấy \[\frac{{{x^2} + 5x + 4}}{{2{x^2} + 3x + 1}} \ge 0 \Leftrightarrow x \in \left( { - \infty ; - 4} \right] \cup \left( { - \frac{1}{2}; + \infty } \right)\]
Vậy tập xác định của hàm số là \[D = \left( { - \infty ; - 4} \right] \cup \left( { - \frac{1}{2}; + \infty } \right).\]
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247