Tìm m để (m + 1)x^2 + mx + m < 0 , với mọi x thuộc R ?

Câu hỏi :

Tìm m để \[(m + 1){x^2} + mx + m < 0,\forall x \in \mathbb{R}\]?

A.m < −1.

B.m >−1.

C.\[m < - \frac{4}{3}\]

D. \[m >\frac{4}{3}\]

* Đáp án

* Hướng dẫn giải

Với m = −1 thì bpt trở thành –x – 1 < 0⇔ x >−1 nên bpt không đúng với mọi x (loại)Do đó m = -1 không thỏa mãn.

Với \[m \ne - 1,(m + 1){x^2} + mx + m < 0,\forall x \in \mathbb{R} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta < 0}\end{array}} \right.\]

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m + 1 < 0}\\{{m^2} - 4m(m + 1) < 0}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m + 1 < 0}\\{ - 3{m^2} - 4m < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m < - 1}\\{\left[ {\begin{array}{*{20}{c}}{m < - \frac{4}{3}}\\{m >0}\end{array}} \right.}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{m < - 1}\\{m < - \frac{4}{3}}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{m < - 1}\\{m >0}\end{array}\left( {VN} \right)} \right.}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m < - 1}\\{m < - \frac{4}{3}}\end{array} \Leftrightarrow m < - \frac{4}{3}} \right.\)

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Dấu của tam thức bậc hai !!

Số câu hỏi: 18

Copyright © 2021 HOCTAP247