Tìm tất cả giá trị thực của tham số mm để hệ bất phương trình

Câu hỏi :

Tìm tất cả giá trị thực của tham số mm để hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + 10x + 16 \le 0\,\,\,\left( 1 \right)}\\{mx \ge 3m + 1\,\,\,\left( 2 \right)}\end{array}} \right.\) vô nghiệm.

A.\[m >- \frac{1}{5}.\]

B. \[m >\frac{1}{4}.\]

C. \[m >- \frac{1}{{11}}.\]

D. \[m >\frac{1}{{32}}.\]

* Đáp án

* Hướng dẫn giải

Với m = 0 thì bất phương trình (2) trở thành \[0x \ge 1\] vô nghiệm .

Với m >0 thì bất phương trình (2) tương đương với \[x \ge \frac{{3m + 1}}{m}\]

Suy ra \[{S_2} = \left[ {\frac{{3m + 1}}{m}; + \infty } \right)\]

Hệ vô nghiệm \[ \Leftrightarrow - 2 < \frac{{3m + 1}}{m} \Leftrightarrow - 2m < 3m + 1 \Leftrightarrow m >- \frac{1}{5}\]Kết hợp m >0 ta được m >0.</>

+) Với m < 0 thì bất phương trình (2) tương đương với \[x \le \frac{{3m + 1}}{m}\]

Suy ra \[{S_2} = \left( { - \infty ;\frac{{3m + 1}}{m}} \right]\]

Hệ vô nghiệm \[ \Leftrightarrow \frac{{3m + 1}}{m} < - 8 \Leftrightarrow 3m + 1 >- 8m \Leftrightarrow m >- \frac{1}{{11}}\]</>

Kết hợp với m < 0 ta được \[ - \frac{1}{{11}} < m < 0\]

Vậy \[m >- \frac{1}{{11}}\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Dấu của tam thức bậc hai !!

Số câu hỏi: 18

Copyright © 2021 HOCTAP247