Hệ bất phương trình

Câu hỏi :

Hệ bất phương trình  \(\left\{ {\begin{array}{*{20}{c}}{m\left( {mx - 1} \right) < 2}\\{m\left( {mx - 2} \right) \ge 2m + 1}\end{array}} \right.\)có nghiệm khi và chỉ khi:

A.\[m < \frac{1}{3}.\]

B. \[0 \ne m < \frac{1}{3}.\]

C. \[m \ne 0.\]

D. m < 0.

* Đáp án

* Hướng dẫn giải

Hệ bất phương trình tương đương với \(\left\{ {\begin{array}{*{20}{c}}{{m^2}x < m + 2}\\{{m^2}x \ge 4m + 1}\end{array}} \right.\)- Với m = 0, ta có hệ bất phương trình trở thành\(\left\{ {\begin{array}{*{20}{c}}{0x < 2}\\{0x \ge 1}\end{array}} \right.\)  hệ bất phương trình vô nghiệm.

- Với \[m \ne 0\], ta có hệ bất phương trình tương đương với \(\left\{ {\begin{array}{*{20}{c}}{x < \frac{{m + 2}}{{{m^2}}}}\\{x \ge \frac{{4m + 1}}{{{m^2}}}}\end{array}} \right.\)

Suy ra hệ bất phương trình có nghiệm khi và chỉ khi \[\frac{{m + 2}}{{{m^2}}} >\frac{{4m + 1}}{{{m^2}}} \Leftrightarrow m < \frac{1}{3}\]

Vậy \[0 \ne m < \frac{1}{3}\] là giá trị cần tìm.

Đáp án cần chọn là: B

 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Hệ bất phương trình !!

Số câu hỏi: 10

Copyright © 2021 HOCTAP247