Các cặp nghiệm (x;y) của hệ phương trình : là :

Câu hỏi :

Các cặp nghiệm (x;y) của hệ phương trình : \(\left\{ {\begin{array}{*{20}{c}}{\left| x \right| + 2\left| y \right| = 3}\\{7x + 5y = 2}\end{array}} \right.\) là :

A.(1;1) hay \[\left( {\frac{{11}}{{19}};\frac{{23}}{{19}}} \right).\]

B.(−1;−1) hay \[\left( { - \frac{{11}}{{19}};\frac{{23}}{{19}}} \right).\]

C.(1;−1) hay \[\left( { - \frac{{11}}{{19}};\frac{{23}}{{19}}} \right).\]

D.(−1;1) hay \[\left( {\frac{{11}}{{19}};\frac{{23}}{{19}}} \right).\]

* Đáp án

* Hướng dẫn giải

Khi\[x,y \ge 0\] thì hệ trở thành \(\left\{ {\begin{array}{*{20}{c}}{x + 2y = 3}\\{7x + 5y = 2}\end{array}} \right. \Leftrightarrow x = - \frac{{11}}{9};y = \frac{{19}}{9}\) (loại)

Khi x, y < 0  thì hệ trở thành \(\left\{ {\begin{array}{*{20}{c}}{ - x - 2y = 3}\\{7x + 5y = 2}\end{array}} \right. \Leftrightarrow x = \frac{{19}}{9},y = \frac{{ - 23}}{9}\) (loại)

Khi\[x \ge 0,y < 0\] thì hệ trở thành\(\left\{ {\begin{array}{*{20}{c}}{x - 2y = 3}\\{7x + 5y = 2}\end{array}} \right. \Leftrightarrow x = 1;y = - 1\)  (nhận)

 Khi x < 0,\[y \ge 0\] thì hệ trở thành \(\left\{ {\begin{array}{*{20}{c}}{ - x + 2y = 3}\\{7x + 5y = 2}\end{array}} \right. \Leftrightarrow x = - \frac{{11}}{{19}};y = \frac{{23}}{{19}}\) (nhận)

Đáp án cần chọn là: C

</></></>

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Hệ phương trình bậc nhất hai ẩn và hệ phương trình !!

Số câu hỏi: 24

Copyright © 2021 HOCTAP247