Hệ phương trình có bao nhiêu nghiệm (x;y) ?

Câu hỏi :

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x + \sqrt {y - 1} = 1}\\{2y + \sqrt {x - 1} = 1}\end{array}} \right.\) có bao nhiêu nghiệm (x;y) ?

A.1.

B.0.

C.2.

D.3.

* Đáp án

* Hướng dẫn giải

Điều kiện: \[x,y \ge 1\]

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{2x + \sqrt {y - 1} = 1}\\{2y + \sqrt {x - 1} = 1}\end{array}} \right. \Rightarrow 2x - 2y + \sqrt {y - 1} - \sqrt {x - 1} = 0\)

\[ \Rightarrow 2\left( {x - y} \right) + \frac{{y - x}}{{\sqrt {y - 1} + \sqrt {x - 1} = 0}}\]

\[ \Rightarrow \left( {x - y} \right)\left( {2 - \frac{1}{{\sqrt {y - 1} + \sqrt {x - 1} }}} \right) = 0\]

Khi x = y thì \[2x + \sqrt {x - 1} = 1 \Rightarrow \sqrt {x - 1} = 1 - 2x\]  (vô nghiệm do \[x \ge 1\]  thì \[VT \ge 0,VP < 0\])

Khi \[\sqrt {y - 1} + \sqrt {x - 1} = \frac{1}{2}\]  thì  \[2x + 2y + \frac{1}{2} = 2 \Rightarrow x + y = \frac{3}{4}\] (vô nghiệm vì \[x,y \ge 1\])

Vậy hệ phương trình vô nghiệm.

Đáp án cần chọn là: B

</>

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Hệ phương trình bậc nhất hai ẩn và hệ phương trình !!

Số câu hỏi: 24

Copyright © 2021 HOCTAP247