A.4.
B.−4.
C.1.
D.Không tồn tại giá trị của xyxy.
- Trừ vế cho vế của phương trình (1) cho (2) ta được :\[{x^2} + {y^2} - y = - 1 \Leftrightarrow {x^2} + {y^2} - y + 1 = 0\]
- Ta có :\(\left\{ {\begin{array}{*{20}{c}}{{x^2} \ge 0,\forall x}\\{{y^2} - y + 1 = {{\left( {y - \frac{1}{2}} \right)}^2} + \frac{3}{4} >0,\forall y}\end{array} \Rightarrow {x^2} + {y^2} - y + 1 >0,\forall x,y} \right.\)
Do đó phương trình \[{x^2} + {y^2} - y + 1 = 0\]vô nghiệm.
Vậy không tồn tại giá trị của xy.
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247