Khi hệ phương trình có nghiệm (x;y;z) với

Câu hỏi :

Khi hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + 2my - z = 1}\\{2x - my - 2z = 2}\\{x - (m + 4)y - z = 1}\end{array}} \right.\)có nghiệm (x;y;z) với \(\left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m \ne - \frac{4}{3}}\end{array}} \right.\), giá trị \[T = 2017x - 2018y - 2017z\;\] là

A.T = −2017.

B.T = 2018.

C.T = 2017.

D.T = −2018.

* Đáp án

* Hướng dẫn giải

Kí hiệu \(\left\{ {\begin{array}{*{20}{c}}{x + 2my - z = 1\left( 1 \right)}\\{2x - my - 2z = 2\left( 2 \right)}\\{x - (m + 4)y - z = 1\left( 3 \right)}\end{array}} \right.\)

Lấy (1) − (3) vế với vế ta được\[\left( {3m + 4} \right)y = 0 \Leftrightarrow y = 0\]  (do \[m \ne 0; - \frac{4}{3})\]Khi đó\(\left\{ {\begin{array}{*{20}{c}}{x - z = 1}\\{y = 0}\end{array}} \right.\)

Ta có \[T = 2017x - 2018y - 2017z = 2017\left( {x - z} \right) = 2017\]Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Hệ phương trình bậc nhất hai ẩn và hệ phương trình !!

Số câu hỏi: 24

Copyright © 2021 HOCTAP247