Cho hai số x và y biết các số x - y; x + y; 3x - 3y theo thứ tự lập thành cấp số cộng và các số x - 2; y + 2; 2x + 3y theo thứ tự đó lập thành cấp số nhân. Tìm x;y

Câu hỏi :

Cho hai số x và y biết các số \[x - y;x + y;3x - 3y\] theo thứ tự lập thành cấp số cộng và các số \[x - 2;y + 2;2x + 3y\;\] theo thứ tự đó lập thành cấp số nhân. Tìm x;y

A.\[x = 3;y = 1\]

B.\[x = 3;y = 1\] hoặc \[x = - \frac{{16}}{{13}};y = - \frac{2}{3}\]

C.\[x = 3;y = 1\]hoặc \[x = \frac{{ - 6}}{{13}};y = - \frac{2}{{13}}\]

D.\[x = 3;y = 1\]hoặc \[x = - \frac{{16}}{3};y = \frac{2}{3}\]

* Đáp án

* Hướng dẫn giải

Từ giả thiết ta có:

\(\left\{ {\begin{array}{*{20}{c}}{(x - y) + (3x - 3y) = 2(x + y)}\\{{{(y + 2)}^2} = (x - 2)(2x + 3y)}\end{array}} \right.\)

\(\begin{array}{l}\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 3y}\\{{{(y + 2)}^2} = (3y - 2)(9y)}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 3y}\\{13{y^2} - 11y - 2 = 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 3y}\\{\left[ {\begin{array}{*{20}{c}}{y = 1}\\{y = - \frac{2}{{13}}}\end{array}} \right.}\end{array}} \right.\end{array}\)

Vậy  \[x = 3;y = 1\] hoặc\[x = - \frac{6}{{13}};y = - \frac{2}{{13}}\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Cấp số nhân !!

Số câu hỏi: 30

Copyright © 2021 HOCTAP247