A.\(\frac{1}{2}\)
B. \[\frac{9}{8}.\]
C. 1
D. \[\frac{3}{4}.\]
\[\mathop {\lim }\limits_{x \to 2} \frac{{x - \sqrt {x + 2} }}{{\sqrt {4x + 1} - 3}}\]
\[ = \mathop {\lim }\limits_{x \to 2} \frac{{(x - \sqrt {x + 2} )(x + \sqrt {x + 2} )(\sqrt {4x + 1} + 3)}}{{(\sqrt {4x + 1} - 3)(\sqrt {4x + 1} + 3)(x + \sqrt {x + 2} )}}\]
\(\)\[\begin{array}{l} = \mathop {\lim }\limits_{x \to 2} \frac{{({x^2} - x - 2)(\sqrt {4x + 1} + 3)}}{{(4x + 1 - 9)(x + \sqrt {x + 2} )}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{(x + 1)(x - 2)(\sqrt {4x + 1} + 3)}}{{4(x - 2)(x + \sqrt {x + 2} )}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{(x + 1)(\sqrt {4x + 1} + 3)}}{{4(x + \sqrt {x + 2} )}}\\ = \frac{{(2 + 1)(\sqrt {4.2 + 1} + 3)}}{{4(2 + \sqrt {2 + 2} )}} = \frac{9}{8}\end{array}\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247