Tính lim x → − ∞ ( x − 1 ) căn bậc hia của x^2/ 2x^4 + x^2 + 1 bằng?

Câu hỏi :

Tính\[\mathop {\lim }\limits_{x \to - \infty } (x - 1)\sqrt {\frac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} \] bằng?

A.\[ - \frac{{\sqrt 2 }}{2}\]

B. \[\frac{{\sqrt 2 }}{2}.\]

C. \(\frac{1}{2}\)

D. \( - \frac{1}{2}\)

* Đáp án

* Hướng dẫn giải

\[\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } (x - 1)\sqrt {\frac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} \\ = \mathop {\lim }\limits_{x \to - \infty } \left[ { - \sqrt {\frac{{{x^2}{{(x - 1)}^2}}}{{2{x^4} + {x^2} + 1}}} } \right]\\ = \mathop {\lim }\limits_{x \to - \infty } \left[ { - \sqrt {\frac{{{x^2}({x^2} - 2x + 1)}}{{2{x^4} + {x^2} + 1}}} } \right]\\ = \mathop {\mathop {\lim }\limits_{x \to - \infty } \left[ { - {{\sqrt {\frac{{{x^4} - 2{x^3} + {x^2}}}{{2{x^4} + {x^2} + 1}}} }^{}}} \right]}\limits_{x \to - \infty } \\ = \mathop {\lim }\limits_{x \to - \infty } \left[ { - \sqrt {\frac{{1 - \frac{2}{x} + \frac{1}{{{x^2}}}}}{{2 + \frac{1}{{{x^2}}} + \frac{1}{{{x^4}}}}}} } \right] = - \frac{{\sqrt 2 }}{2}\end{array}\]

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Các dạng vô định của giới hạn !!

Số câu hỏi: 23

Copyright © 2021 HOCTAP247