Tính lim x → − vô cực ( căn bậc hai x^2 + 1 + x − 1 ) bằng?

Câu hỏi :

Tính \[\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 1} + x - 1} \right)\]bằng?

A.−1

B.0

C.\(\frac{1}{2}\)

D.1

* Đáp án

* Hướng dẫn giải

\[\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 1} + x - 1} \right)\]

\[ = \mathop {\lim }\limits_{x \to - \infty } \frac{{(\sqrt {{x^2} + 1} + x - 1)(\sqrt {{x^2} + 1} - x + 1)}}{{\sqrt {{x^2} + 1} - x + 1}}\]

\[\begin{array}{l} = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 1 - {{(x - 1)}^2}}}{{\sqrt {{x^2} + 1} - x + 1}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 1 - {x^2} + 2x - 1}}{{\sqrt {{x^2} + 1} - x + 1}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x}}{{\sqrt {{x^2} + 1} - x + 1}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{{2x}}{x}}}{{\frac{{\sqrt {{x^2} + 1} }}{x} - \frac{x}{x} + \frac{1}{x}}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{2}{{ - \sqrt {1 + \frac{1}{{{x^2}}}} - 1 + \frac{1}{x}}}\\ = \frac{2}{{ - 1 - 1 + 0}} = - 1\end{array}\]

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Các dạng vô định của giới hạn !!

Số câu hỏi: 23

Copyright © 2021 HOCTAP247