Một người chơi trò gieo súc sắc. Mỗi ván gieo đồng thời ba con súc sắc. Người chơi thắng cuộc nếu xuất hiện ít nhất 2 mặt sáu chấm. Tính xác suất để trong ba ván, người đó thắng ít...

Câu hỏi :

Một người chơi trò gieo súc sắc. Mỗi ván gieo đồng thời ba con súc sắc. Người chơi thắng cuộc nếu xuất hiện ít nhất 2 mặt sáu chấm. Tính xác suất để trong ba ván, người đó thắng ít nhất hai ván

A.\[\frac{1}{{1296}}\]

B. \[\frac{{308}}{{19683}}\]

C. \[\frac{{58}}{{19683}}\]

D. \[\frac{{53}}{{23328}}\]

* Đáp án

* Hướng dẫn giải

- Tính xác suất để người đó gieo súc sắc thắng trong 1 ván (nghĩa là gieo được ít nhất 2 mặt 6 chấm).

Số phần tử của không gian mẫu\[n\left( {\rm{\Omega }} \right) = {6^3} = 216\]

Gọi A là biến cố: “Gieo được ít nhất 2 mặt 6 chấm”

Số cách gieo được hai mặt 6 chấm là\[C_3^2.1.1.5 = 15\]cách

Số cách gieo được ba mặt 6 chấm là: 1 cách

Số cách gieo được ít nhất 2 mặt 6 chấm là: \[n\left( A \right) = 15 + 1 = 16\] cách

Xác suất để người đó gieo thắng 1 ván là: \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{16}}{{216}} = \frac{2}{{27}}\]

Do đó xác suất để thua 1 ván là\[1 - P\left( A \right) = 1 - \frac{2}{{27}} = \frac{{25}}{{27}}\]

- Tính xác suất để người đó thắng ít nhất 2 ván.

TH1: Thắng 2 ván, thua 1 ván

Xác suất để người đó thắng 2 ván thua 1 ván là\[C_3^2.\frac{2}{{27}}.\frac{2}{{27}}.\frac{{25}}{{27}} = \frac{{100}}{{6561}}\]

Xác suất để người đó thắng cả 3 ván là:\[{\left( {\frac{2}{{27}}} \right)^3} = \frac{8}{{19683}}\]

Theo quy tắc cộng xác suất ta có: Xác suất để người đó thắng ít nhất 2 ván là:

\[P = \frac{{100}}{{6561}} + \frac{8}{{19683}} = \frac{{308}}{{19683}}\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Biến cố và xác suất của biến cố !!

Số câu hỏi: 37

Copyright © 2021 HOCTAP247