Có 6 học sinh gồm 2 học sinh lớp A, 2 học sinh lớp B và 2 học sinh lớp C xếp ngẫu nhiên thành một hàng ngang. Tính xác suất để nhóm bất kì 3 học sinh liền kề nhau trong hàng luôn c...

Câu hỏi :

Có 6 học sinh gồm 2 học sinh lớp A, 2 học sinh lớp B và 2 học sinh lớp C xếp ngẫu nhiên thành một hàng ngang. Tính xác suất để nhóm bất kì 3 học sinh liền kề nhau trong hàng luôn có mặt học sinh của ba lớp A, B, C

A.\[\frac{1}{{120}}\]

B. \[\frac{1}{3}\]

C. \[\frac{1}{{30}}\]

D. \[\frac{1}{{15}}\]

* Đáp án

* Hướng dẫn giải

Số phần tử của không gian mẫu:\[n\left( {\rm{\Omega }} \right) = 6!\]

Bước 1: Xếp 3 học sinh đứng đầu hàng

+) Chọn 3 học sinh lớp A, B, C để đứng đầu hàng. Mỗi lớp 1 học sinh: Có\[{(C_2^1)^3}\]cách chọn.

+) Với mỗi cách chọn trên ta sắp xếp thứ tự 3 học sinh này: Có 3! cách xếp.

Theo quy tắc nhân có 48 cách xếp 3 học sinh A,B,C đứng đầu hàng.

Bước 2: Với mỗi một cách xếp 3 học sinh ở 2 bước trên (Giả sử thứ tự khi xếp 3 học sinh ở bước 2 là ABC),

+) Ta chọn 1 học sinh trong 3 học sinh còn lại xếp vị trí thứ 4

=>Chỉ có thể là học sinh lớp A: ABCA

+) Ta chọn học sinh xếp vào vị trí thứ 5: Chỉ có thể là B

+) Ta chọn học sinh xếp vào vị trí thứ 6: Chỉ có thể là C

Số phần tử của A là\[n\left( A \right) = {(C_2^1)^3}.3! = 48 \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{48}}{{6!}} = \frac{1}{{15}}\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Biến cố và xác suất của biến cố !!

Số câu hỏi: 37

Copyright © 2021 HOCTAP247