A.\[\frac{{209}}{{590}}\]
B. \[\frac{{161}}{{590}}\]
C. \[\frac{{53}}{{590}}\]
D. \[\frac{{78}}{{295}}\]
Số cách lấy ngẫu nhiên hai quả cầu trong số 60 quả cầu đã cho là:\[C_{60}^2\] cách lấy.
Gọi biến cố A: “Lấy được hai quả cầu mà tích hai số trên hai quả cầu chia hết cho 10”.
TH1: Hai quả cầu lấy được có đúng một quả mang số chia hết cho 10
⇒ Có\[C_6^1.C_{54}^1\] cách lấy.
TH2: Hai quả cầu lấy dược đều là số chia hết cho 10
⇒ Có \[C_6^2\] cách lấy.
TH3: Hai quả cầu lấy được có 1 quả cầu là số chia hết cho 2 (nhưng không chia hết cho 5) và 1 quả cầu mang số chia hết cho 5 (nhưng không chia hết cho 2)
⇒ Có\[\left( {30 - 6} \right)\left( {12 - 6} \right) = 24.6 = 144\] cách lấy.
\[ \Rightarrow {n_A} = C_6^1.C_{54}^1 + C_6^2 + 144 = 483\] cách lấy.
\[ \Rightarrow P\left( A \right) = \frac{{483}}{{C_{60}^2}} = \frac{{161}}{{590}}.\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247