Cho đa giác đều 12 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong 12 đỉnh của đa giác. Xác suất để 3 đỉnh được chọn tạo thành tam giác đều là :
A.\[P = \frac{1}{{14}}.\]
B. \[P = \frac{1}{{220}}.\]
C. \[P = \frac{1}{4}.\]
D. \[P = \frac{1}{{55}}.\]
Trả lời:
Bước 1:
Gọi A là biến cố “3 đỉnh được chọn tạo thành tam giác đều”.
Bước 2:
Số cách chọn 3 đỉnh bất kì trong 12 đỉnh là\[\left| {\rm{\Omega }} \right| = C_{12}^3\]
Bước 3:
Để 3 đỉnh tạo thành 1 tam giác đều thì các đỉnh cách đều nhau. Do đó số cách chọn tam giác đều là
\[\left| {{{\rm{\Omega }}_A}} \right| = \frac{{12}}{3} = 4.\]
Bước 4:
Vậy xác suất là \[P = \frac{{\left| {{{\rm{\Omega }}_A}} \right|}}{{\left| {\rm{\Omega }} \right|}} = \frac{4}{{C_{12}^3}} = \frac{1}{{55}}.\]
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247