Tìm số tự nhiên n để phân số B = (10n - 3)/(4n - 10) đạt giá trị lớn nhất. Tìm giá trị lớn nhất.

Câu hỏi :

Tìm số tự nhiên n để phân số \(B = \frac{{10n - 3}}{{4n - 10}}\) đạt giá trị lớn nhất. Tìm giá trị lớn nhất.

* Đáp án

* Hướng dẫn giải

 

Hướng dẫn giải:

Ta có: \[B = \frac{{10n - 3}}{{4n - 10}} = \frac{{2,5\left( {4n - 10} \right) + 22}}{{4n - 10}}\]

\[ = \frac{{2,5\left( {4n - 10} \right)}}{{4n - 10}} + \frac{{22}}{{4n - 10}} = 2,5 + \frac{{22}}{{4n - 10}}\]

Vì n là số tự nhiên nên \[B = 2,5 + \frac{{22}}{{4n - 10}}\] đạt giá trị lớn nhất khi \[\frac{{22}}{{4n - 10}}\] đạt đạt giá trị lớn nhất.

\[\frac{{22}}{{4n - 10}}\] đạt đạt giá trị lớn nhất khi 4n – 10 là số nguyên dương nhỏ nhất.

+) Nếu 4n – 10 = 1 thì 4n = 11 hay \(n = \frac{{11}}{4}\) (loại)

+) Nếu 4n – 10 = 2 thì 4n = 12 hay n = 3 (chọn)

Khi đó \(B = 2,5 + \frac{{22}}{2} = 13,5\)

Vậy B đạt giá trị lớn nhất là 13,5 khi n = 3.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi Cuối kì học kỳ 2 Toán 6 có đáp án !!

Số câu hỏi: 60

Copyright © 2021 HOCTAP247