Hàm số nào sau đây có

Câu hỏi :

Hàm số nào sau đây có \[y' = 2x + \frac{1}{{{x^2}}}\]?

A.\[y = \frac{{{x^3} + 1}}{x}\]

B. \[y = \frac{{3\left( {{x^2} + x} \right)}}{{{x^3}}}\]

C. \[y = \frac{{{x^3} + 5x - 1}}{x}\]

D. \[y = \frac{{2{x^2} + x - 1}}{x}\]

* Đáp án

B

* Hướng dẫn giải

Đáp án B:

\[\begin{array}{*{20}{l}}{y = \frac{{3\left( {x + 1} \right)}}{{{x^2}}}}\\{ \Rightarrow y' = 3.\frac{{{{\left( {x + 1} \right)}^\prime }.{x^2} - \left( {x + 1} \right){{\left( {{x^2}} \right)}^\prime }}}{{{x^4}}}}\\{ = 3\frac{{{x^2} - 2x\left( {x + 1} \right)}}{{{x^4}}}}\\{ = 3\frac{{ - {x^2} - 2x}}{{{x^4}}} = - 3\frac{{x + 2}}{{{x^3}}}}\end{array}\]

Đáp án C: \[y' = \frac{{{{\left( {{x^3} + 5x - 1} \right)}^\prime }.x - \left( {{x^3} + 5x - 1} \right).x'}}{{{x^2}}}\]

\[ = \frac{{\left( {3{x^2} + 5} \right).x - {x^3} - 5x + 1}}{{{x^2}}} = \frac{{2{x^3} + 1}}{{{x^2}}} = 2x + \frac{1}{{{x^2}}}\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Các quy tắc tính đạo hàm !!

Số câu hỏi: 38

Copyright © 2021 HOCTAP247