Cho hàm số y=f(x) có đạo hàm trên

Câu hỏi :

Cho hàm số y=f(x) có đạo hàm trên  \(\mathbb{R}\) Xét các hàm số \[g(x) = f(x) - f(2x)\] và \[h(x) = f(x) - f(4x)\] Biết rằng \[g\prime \left( 1 \right) = 21\;\] và \[g\prime \left( 2 \right) = 1000\]. Tính h′(1)

A.−2018.    

B.2021.       

C.2021.     

D.2019

* Đáp án

* Hướng dẫn giải

Bước 1:

\[\begin{array}{*{20}{l}}{g'\left( x \right) = f'\left( x \right) - 2f'\left( {2x} \right)}\\{h'\left( x \right) = f'\left( x \right) - 4f'\left( {4x} \right)}\end{array}\]

Bước 2:

\[\begin{array}{*{20}{l}}{g'\left( 1 \right) = f'\left( 1 \right) - 2f'\left( 2 \right) = 21}\\{g'\left( 2 \right) = f'\left( 2 \right) - 2f'\left( 4 \right) = 1000}\\{ \Rightarrow 2f'\left( 2 \right) - 4f'\left( 4 \right) = 2000}\\{h'\left( 1 \right) = f'\left( 1 \right) - 4f'\left( 4 \right)}\\{ = g'\left( 1 \right) + 2g'\left( 2 \right) = 2021}\end{array}\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Các quy tắc tính đạo hàm !!

Số câu hỏi: 38

Copyright © 2021 HOCTAP247