A.\[{y^{\left( 4 \right)}} = \frac{{7.4!}}{{{{\left( {x - 3} \right)}^5}}} - \frac{{5.4!}}{{{{\left( {x - 2} \right)}^5}}}\]
B. \[{y^{\left( 4 \right)}} = \frac{{5.4!}}{{{{\left( {x - 3} \right)}^5}}} - \frac{{2.4!}}{{{{\left( {x - 2} \right)}^5}}}\]
C. \[{y^{\left( 4 \right)}} = \frac{{5.4!}}{{{{\left( {x - 2} \right)}^5}}} - \frac{{7.4!}}{{{{\left( {x - 3} \right)}^5}}}\]
D. \[{y^{\left( 4 \right)}} = \frac{7}{{{{\left( {x - 3} \right)}^4}}} - \frac{5}{{{{\left( {x - 2} \right)}^4}}}\]
\[\begin{array}{*{20}{l}}{y = \frac{{2x + 1}}{{{x^2} - 5x + 6}} = \frac{{2x + 1}}{{\left( {x - 2} \right)\left( {x - 3} \right)}} = \frac{7}{{x - 3}} - \frac{5}{{x - 2}}}\\{ \Rightarrow {y^{\left( 4 \right)}} = 7{{\left( {\frac{1}{{x - 3}}} \right)}^{\left( 4 \right)}} - 5{{\left( {\frac{1}{{x - 2}}} \right)}^{\left( 4 \right)}}}\end{array}\]
Xét hàm số \[\frac{1}{{ax + b}},\,a \ne 0\] ta có :
\[\begin{array}{l}y\prime = {\frac{{ - a}}{{{{(ax + b)}^2}}}^{}}\\y\prime \prime = {\frac{{a.2(ax + b).a}}{{(ax + b)4}}^{}} = \frac{{2{a^2}}}{{{{(ax + b)}^3}}}\end{array}\]
\[y\prime \prime \prime = \frac{{ - 2{a^2}.3{{(ax + b)}^2}.a}}{{{{(ax + b)}^6}}} = \frac{{ - 2.3.{a^3}}}{{{{(ax + b)}^4}}}\]
\[...\]
\[\begin{array}{l}{y^{(n)}} = \frac{{{{( - 1)}^n}.{a^n}.n!}}{{{{(ax + b)}^{n + 1}}}}\\ \Rightarrow {(\frac{1}{{x - 3}})^{(4)}} = \frac{{{{( - 1)}^4}{{.1}^4}.4!}}{{{{(x - 3)}^5}}} = \frac{{4!}}{{{{(x - 2)}^5}}}\\{\left( {\frac{1}{{x - 2}}} \right)^{\left( 4 \right)}} = \frac{{{{( - 1)}^4}{{.1}^4}.4!}}{{{{(x - 2)}^5}}} = \frac{{4!}}{{{{(x - 2)}^5}}}\\ \Rightarrow {y^{(4)}} = 7{\left( {\frac{1}{{x - 3}}} \right)^{\left( 4 \right)}} - 5{\left( {\frac{1}{{x - 2}}} \right)^{\left( 4 \right)}} = \frac{{7.4!}}{{{{(x - 3)}^5}}} - \frac{{5.4!}}{{{{(x - 2)}^5}}}\end{array}\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247