A.CD,EF,EG.
B.CD,IG,HF.
C.AB,IG,HF.
D.AC,IG,BD.
Trong\[mp(EHI)\], gọi\[O = HF \cap IG\] Ta có
● \[O \in HF\] mà \[HF \subset \left( {ACD} \right)\] suy ra \[O \in \left( {ACD} \right)\].
● \[O \in IG\] mà \[IG \subset \left( {BCD} \right)\] suy ra \[O \in \left( {BCD} \right)\]
Do đó \[O \in \left( {ACD} \right) \cap \left( {BCD} \right)\] (1)
Mà \[\left( {ACD} \right) \cap \left( {BCD} \right) = CD\](2)
Từ (1) và (2), suy ra \[O \in CD\]
Vậy ba đường thẳng CD,IG,HF đồng quy.
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247