A.\[\tan \alpha = \frac{1}{{\sqrt 8 }}.\]
B. \[\tan \alpha = \frac{1}{{\sqrt 7 }}.\]
C. \[\alpha = {30^0}.\]
D. \[\tan \alpha = \frac{1}{{\sqrt 6 }}.\]
Bước 1:
Do \[BC \bot \left( {SAB} \right)\]⇒ B là hình chiếu của C lên (SAB)
Mà S là hình chiếu của chính nó lên (SAB).
⇒SB là hình chiếu của SC lên (SAB)
⇒ Góc giữa SC và (SAB) là góc giữa SC và SB và bằng \[\widehat {BSC}\]
Bước 2:
Ta có:
\[SB = \sqrt {S{A^2} + A{B^2}} = \sqrt {6{a^2} + {a^2}} = a\sqrt 7 \]
Xét tam giác SBC có
\[\tan \widehat {BSC} = \frac{{BC}}{{SB}} = \frac{a}{{a\sqrt 7 }} = \frac{1}{{\sqrt 7 }}.\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247